Multi-Secret Image Sharing (MSIS) systems share multiple images to multiple participants in unintelligible forms that can be recovered using all the shares. This paper employs the concept of progressive secret sharing with MSIS to introduce a new system, where the number of used shares in the recovery process defines the quality of the recovered secrets. The proposed system works for any number of secret color images, and is lossless when all the shares are present. The Lorenz chaotic system, which is numerically solved using Euler method, is used as source of randomness to encrypt the secret images. Image encryption utilizes a long system key to perform the substitution and permutation stages. The system passes all security tests, including statistical analysis and key sensitivity, and it is also robust to noise and crop attacks. The analysis results are within the required ranges for a good encryption system, and they are better than those of the compared MSIS systems. © 2023 IEEE.
Valorization of Agricultural and Marine Waste for Fabrication of Bio-Adsorbent Sheets
Industrial wastewater often contains considerable amounts of toxic pollutants that would endanger public health and the environment. In developing countries, these toxins are often discharged into natural ecosystems without pretreatment as it requires costly treatment processes, which causes long-term harmful socioeconomic impacts. Employing wastewater treatment plants using physical, biological, and chemical methods to clean the wastewater is considered by many nations the answer to the environmental crises. The treated water could be used for targeting the irrigation systems in its majority, as it is biologically acceptable for that specific use, which economizes the use of freshwater sources for municipal use specifically. This study presents a novel method for fabricating an efficient adsorbent sheet for wastewater treatment. The sheets are fabricated by combining sugarcane bagasse pulp as a scaffold with commercial, naturally activated carbon and bimetallic-prepared adsorbents. Fava beans and algae biomass are utilized in the production of activated carbon because of their high carbon contents, availability, and low cost. The prepared composite sheets are synthesized and investigated for several pollutants’ removal such as methyl orange, crystal violet dyes, and chromium heavy metals. These pollutants are selected due to the high discharge amount and toxic effect on aquatic life. FT-IR and SEM analyses are used to characterize the samples. To determine the mechanism of adsorption, the intra-particle diffuse, pseudo-first-order, and pseudo-second-order kinetic models are used to test the experimental data. All the prepared sheets can retain the pollutants, with the best removal efficiency of 96.24% for methyl orange adsorption onto the bio-composite mixed sheet. For methyl orange, the error values and correlation coefficient R2of 0.971 and 0.951 shows that the Temkin isotherm and pseudo-first-order kinetic model, respectively, are capable of providing the highest goodness of fit for the experimental data. The results of the isotherms and kinetics parameter sets provided valuable proof that the adsorption of methyl orange onto the bio-composite sheet is an endothermic phenomenon involving both chemical and physical adsorption. © World Environmental and Water Resources Congress 2023.All rights reserved
COVID-19 Diagnosis from CT-images Using Transfer Learning
In symptomatic patients, a positive COVID-19 test is critical for securing life-saving services such as ICU care and ventilator support; it may cause septic shock, septic pneumonia, respiratory failure, heart difficulties, liver issues, and even death. CAD systems help people in rural places and doctors in the early detection of COVID-19. A diagnostic and severity detection technique utilizing transfer learning and a backpropagation neural network has been developed with the aid of a computer for this purpose. This study aims to compare and analyze multiple deep learning-enhanced strategies for detecting COVID-19 in CT scan medical images. The COVID-19 CT scan binary classification challenge utilized two powerful pretrained CNN models: Inception ResNet V2 and ResNet50. To achieve higher accuracy in the diagnosis of COVID-19 using CT scan images, a new approach called Inception ResNet was employed, and it resulted in 97.3% accuracy and 97.38% specificity. Transfer learning techniques were employed to reduce the training time and get around the shortage of data. The proposed approaches outperformed more than other papers in the literature by 0.2%. © 2023 IEEE.
Chaos-Based Image Encryption Using DNA Manipulation and a Modified Arnold Transform
Digital images, which we store and communicate everyday, may contain confidential information that must not be exposed to others. Numerous researches are interested in encryption, which protects the images from ending up in the hands of unauthorized third parties. This paper proposes an image encryption scheme using chaotic systems, DNA manipulation, and a modified Arnold transform. Both DNA manipulation and hyperchaotic Lorenz system are utilized in the substitution of the images’ pixel values. An additional role of hyperchaotic Lorenz system is that it generates the random numbers required within the DNA manipulation steps. DNA cycling is implemented based on simple DNA coding rules and DNA addition and subtraction rules with modulus operation. The modified Arnold transform alters the pixels’ positions, where it guarantees effective pixel permutation that never outputs the same input pixels arrangement again. The proposed design is simple and amenable for hardware realization. Several well established performance evaluation tests including statistical properties of the encrypted image, key space, and differential attack analysis were conducted for several images. The proposed scheme passed the tests and demonstrated good results compared to several recent chaos-based image encryption schemes. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Review on Coral Reef Regeneration Methods through Renewable Powered Electrotherapy
The restoration of coral reef population in coastal regions is currently a growing concern. Many attempts have been made to apply new approaches to limit the deterioration of coral reefs, and to accelerate the growth of new reefs to protect coastal areas and ecosystems using available renewable energy sources. This paper highlights the new approaches and their various advantages and limitations in tidal and wave energy. The paper also suggests improvements to some of those systems using the recent developments in soft robotics, especially the use of biomimetic fish as a feasible support platform for the monitoring and maintenance of the power generation and potential restoration systems. © 2023 IEEE.
Pixel-based Visual Secret Sharing Using Lorenz System
(n, n)-Visual Secret Sharing (VSS) allows a user to send an image in the form of shares to different participants. Every share can not reveal the secret alone, and only all shares together can reveal the secret with fast recovery. This paper proposes a pixel-based (n, n)-VSS system, where to share a pixel from the secret image, (n – 1) random pixels are generated from the Lorenz chaotic system for a varying set of (n – 1) shares. Then, the nth pixel is calculated for a random share using the secret pixel and the generated (n – 1) random pixels. The system is efficient, lossless, implemented for grayscale and color images, and has a simple XOR-based recovery scheme. It passed several security analysis tests and is robust against noise attacks. Moreover, performance analysis and comparisons with other VSS systems are presented, showing good results. © 2023 ACM.
Capacitive Power Transfer Modeling of Charging Inner-body Devices
Wireless power transfer (WPT) is highly desirable for applications with battery restrictions, such as biomedical applications. For example, in the case of implantable devices, power is transmitted through the human body, which has dielectric characteristics that must be considered during the design of the WPT system. This paper examines capacitive power transfer through the human body and formulates the complete WPT system, including the human body model. The power delivered to the implantable device is also analyzed. Finally, the system efficiency is discussed under different body and load scenarios to determine the optimal transmission frequency and load impedance. © 2023 IEEE.
CNTFET-based Approximate Ternary Adder Design
Multiple-Valued Logic (MVL) offers better data representation allowing higher information processing within the same amount of digits. With a trade-off in accuracy, approximate computation is a method to improve the power, size, and speed of digital circuits. This paper presents the design of CNTFET-based ternary half adder, full adder, 2-trit carry ripple adder, and 4trit carry ripple adder with different accuracies. The proposed designs are implemented using HSPICE tool and simulated for power consumption, delay, and error analysis. The trade-off between the transistor count and the computation accuracy of the propsoed designs is discussed. Simulation results show that the approximate and corrected approximate designs could significantly improve power-delay product and transistor count compared to their accurate designs. For some cases, approximate and corrected approximate designs have up to 19.8 × improvement in the transistors count and up to 295.3 × improvement in PDP compared to their accurate designs. The corrected designs outperform the approximate ones in terms of accuracy while achieving around 1.5 × improvement in AED. © 2023 IEEE.
Double Visual Cryptography Using Generalized Tent Map, Rotation, and Image Filtering
This paper introduces a Multi-Visual Cryptography (MVC) system for sharing two color images, where the secrets can be revealed with low computation power using all the shares. The system uses the generalized Tent map as a source of randomness to generate any number of random shares. More specifically, (n-1) random shares are generated, and then, the nth share is calculated from the random shares and the secrets using rotations of the shares. In recovery, rotation of the last share recovers the two images based on the angle of rotation. Half the number of pixels is recovered for each secret image, whereas a modified weighted average filter is used to improve the quality of the recovered images significantly. The system does not use halftone images and produces shares of the same size as the secrets without pixel expansion or auxiliary data. The proposed system is efficient, passed several security tests, and is compared to recent works. © 2023 IEEE.
Adsorption as an Emerging Technology and Its New Advances of Eco-Friendly Characteristics: Isotherm, Kinetic, and Thermodynamic Analysis
Water contamination with paints causes a colour agent to the water that negatively affects the environment, organisms, and humans. Different physicochemical processes are applied for wastewater treatment; however, they have many drawbacks such as high cost, generating toxic waste, and non-effective at low concentrations. Adsorption is considered a promising technique for pollutant removal from polluted wastewater. Commercial activated carbon, nano-materials, and natural biological materials are used as adsorbents in adsorption. This chapter focuses on discussing the adsorption process, the factors affecting the adsorption, different adsorption materials, and the isothermal, kinetic, and thermodynamic models. © 2023 selection and editorial matter, Irene Samy Fahim and Lobna A. Said; individual chapters, the contributors.