An Efficient Multi-Secret Image Sharing System Based on Chinese Remainder Theorem and Its FPGA Realization

Multi-Secret Image Sharing (MSIS) is important in information security when multiple images are shared in an unintelligible form to different participants, where the images can only be recovered using the shares from participants. This paper proposes a simple and efficient ( n,n )-MSIS system for colored images based on XOR and Chinese Remainder Theorem (CRT), where all the n share are required in the recovery. The system improves the security by adding dependency on the input images to be robust against differential attacks, and by using several delay units. It works with even and odd number of inputs, and has a long sensitive system key design for the CRT. Security analysis and a comparison with related literature are introduced with good results including statistical tests, differential attack measures, and key sensitivity tests as well as performance analysis tests such as time and space complexity. In addition, Field Programmable Gate Array (FPGA) realization of the proposed system is presented with throughput 530 Mbits/sec. Finally, the proposed MSIS system is validated through software and hardware with all statistical analyses and proper hardware resources with low power consumption, high throughput and high level of security. © 2013 IEEE.

Software and hardware realizations for different designs of chaos-based secret image sharing systems

Secret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis. © The Author(s) 2024.

Secure blind watermarking using Fractional-Order Lorenz system in the frequency domain

This paper investigates two different blind watermarking systems in the frequency domain with the development of a Pseudo Random Number Generator (PRNG), based on a fractional-order chaotic system, for watermark encryption. The methodology is based on converting the cover image to the YCbCr color domain and applying two different techniques of frequency transforms, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), to the Y channel. Then, the encrypted watermark is embedded in the middle-frequency band and HH band coefficients for the DCT and DWT, respectively. For more security and long encryption key size, the fractional-order Lorenz system is used to double the encryption key size and make it secure against brute-force attacks. The proposed algorithms successfully detect the hidden watermark by using the statistical properties of the embedding media, where the PRNG is examined using statistical tests and the watermarking systems are evaluated using standard imperceptibility and robustness measures. Common attacks such as noise-adding attacks, image enhancement attacks and geometric transformation attacks are discussed. Results of the PRNG demonstrate sensitivity to the system parameters, and results of the watermarking systems show good imperceptibility while keeping the robustness measures in a good range. © 2023 Elsevier GmbH

Analysis and Guidelines for Different Designs of Pseudo Random Number Generators

The design of an efficient Pseudo Random Number Generator (PRNG) with good randomness properties is an important research topic because it is a core component in many applications. Based on an extensive study of most PRNGs in the past few decades, this paper categorizes six distinct design scenarios under two primary groups: non-chaotic and chaotic generators. The non-chaotic group comprises Linear Feedback Shift Registers (LFSR) with S-Boxes, primitive roots, and elliptic curves, whereas the chaotic group encompasses discrete, continuous, and fractional-order chaotic generators. This paper delves into the related scientific summaries, equations, flowcharts, and designs with necessary recommendations for each PRNG scenario. Even though the focus is on the basic design characteristics that provide simple, functional and secure PRNGs, it is possible to enhance those designs for additional features and improved efficiency. Simulation outcomes and system key configurations, which produce long random sequences, are also presented and evaluated using leading criteria. The evaluation criteria include the National Institute of Standards and Technology (NIST) SP-800-22 test suite, TestU01 randomness tests, histogram, entropy, autocorrelation, and cross-correlation. Furthermore, key space, key sensitivity, and bit rate indicate that all designed examples meet international standards with high quality. The presented PRNGs are compared and integrated into an image encryption system. Although each PRNG design scenario can have a different key space, simple designs with fixed-length system keys are chosen for the sake of proper comparisons. Statistical and security assessments of the encryption system demonstrate that the PRNGs are cryptographically secure. © 2013 IEEE.