This paper discusses voltage-controlled M-M relaxation oscillator with analytical and circuit simulations
Fractional-Order Oscillators Based on Double Op-Amp
In this paper, complete analysis and design for fractional-order oscillators based on double Op-Amp are presented
Fractional-order oscillators based on a single Op-Amp
This chapter introduces a family of fractional-order oscillators based on a single operational amplifier (Op-Amp) with two fractional-order capacitors. Twelve different fractional-order oscillator circuits are investigated where the state matrix, oscillation frequency, and oscillation condition for each circuit are presented. The phase difference between the two oscillatory outputs is deduced in terms of the fractional-order parameters. The fractional-order parameter enhances the oscillator performance by providing an extra degree-of-freedom. Also, the resulting circuits provide independent controllability for the phase difference and the oscillation frequency. Numerical simulations using MATLAB® are performed to study the effect of the fractional-order parameters on the circuit response. Moreover, PSpice simulations are performed on different cases using two different fractional-order capacitors. Selected cases are verified experimentally to confirm the theoretical findings. © 2022 Elsevier Inc. All rights reserved.
A generalized family of memristor-based voltage controlled relaxation oscillator
Recently, memristive oscillators are a significant topic in the nonlinear circuit theory where there is a possibility to build relaxation oscillators without existence of reactive elements