Carbon nanomaterials with various nanostructures (carbon nanotubes, graphene, graphene oxide, fullerene, nano diamonds, carbon quantum dots, carbon nanofibers, graphitic carbon nitrides, and nano porous carbons) are the decade’s most distinguishing and popular materials. They have distinctive physicochemical qualities such as chemical stability, mechanical strength, hardness, thermal and electrical conductivities, and so on. Furthermore, they are easily surface functionalized and tweaked, modifying them for high-end specific applications. Carbon nanostructures’ properties and surface characteristics are determined by the synthesis method used to create them. Nanoscience and nanotechnology have the potential to create materials with unexpected functions and qualities, which are transforming all industries. Carbon nanoparticles such as fullerene, carbon nanotubes, and graphene stand out among the various kinds of nanomaterials. These nanoparticles offer a wide range of practical applications, particularly in adsorption processes. Carbon nanoparticles exhibit unique structures that could be used in the construction of extremely sensitive, selective, and effective adsorbent devices for the removal of inorganic, organic, and biological pollutants from water solutions, as well as nano sensors and drug delivery systems. In this chapter, we demonstrated the number of studies published in recent years that used carbon nanomaterials as adsorbents. Furthermore, this chapter discusses essential features of adsorption and different nanocarbon carbon composite material, such as the contrast between physical and chemical absorption. Furthermore, diverse carbon nanomaterial synthesis such as AC–FeO ?Cu and Bimetallic FeO ?Cu/algae activated carbon composites AC–Fe0 ?Cu methodologies, functionalization, and characteristics are provided and logically addressed. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN
The textile business is one of the most hazardous industries since it produces several chemicals, such as dyes, which are released into water streams with ef-fluents. For the survival of the planet’s life and the advancement of humanity, water is a crucial resource. One of the anthropogenic activities that pollute and consume water is the textile industry. Thus, the purpose of the current effort is to Apply coagulation as a Physico-chemical and biological treatment strat-egy with different techniques and mechanisms to treat the effluent streams of textile industries. The discharge of these effluents has a negative impact on the environment, marine life, and human health. Therefore, the treatment of these effluents before discharging is an important matter to reduce their adverse ef-fect. Many physico-chemical and biological treatment strategies for contaminants removal from polluted wastewater have been proposed. Coagulation is thought to be one of the most promising physico-chemical strategies for removing con-taminants and colouring pollutants from contaminated water. Coagulation is accompanied by a floculation process to aid precipitation, as well as the collection of the created sludge following the treatment phase. Different commercial, and natural coagulants have been applied as a coagulants in the process of coagulation. Additionally, many factors such as; pH, coagulant dose, pollu-tants concentration are optimized to obtain high coagulants removal capacity. This review will discuss the coagulation process, coagulant types and aids in addition to the factors affecting the coagulation process. Additionally, a brief comparison between the coagulation process, and the other processes; princi-ple, advantages, disadvantages, and their efficiency were discussed throgh the review. Furthermore, it discusses the models and optimization techniques used for the coagulation process including response surface methodology (RSM), ar-tificial neural network (ANN), and several metaheuristic algorithms combined with ANN and RSM for optimization in previous work. The ANN model has more accurate results than RSM. The ANN combined with genetic algorithm gives an accurate predicted optimum solution. © 2023 The Authors
Bio-inspired adsorption sheets from waste material for anionic methyl orange dye removal
Abstract: Nano zero-valent iron (nZVI), bimetallic nano zero-valent iron-copper (Fe0–Cu), and Raw algae (sargassum dentifolium) activated carbon-supported bimetallic nano zero-valent iron-copper (AC-Fe0–Cu) are synthesized and characterized using FT-IR, XRD, and SEM. The maximum removal capacity is demonstrated by bimetallic activated carbon AC-Fe0–Cu, which is estimated at 946.5 mg/g capacity at the condition pH = 7, 30 min contact time under shaking at 120 rpm at ambient temperature, 200 ppm of M.O, and 1 g/l dose of raw algae-Fe0–Cu adsorbent. The elimination capability of the H3PO4 chemical AC-Fe0–Cu adsorbent is 991.96 mg/g under the conditions of pH = 3, 120 min contact time under shaking at 120 rpm at room temperature, 200 ppm of M.O, and 2 g/l doses of H3PO4 chemical AC-Fe0–Cu adsorbent. The Bagasse activated carbon adsorbent sheet achieves a removal capacity of 71.6 mg/g MO dye solution. Kinetic and isothermal models are used to fit the results of time and concentration experiments. The intra-particle model yields the best fit for bimetallic Fe0–Cu, AC-Fe0–Cu, H3PO4 chemical AC-Fe0–Cu and bagasse activated carbon(CH), with corrected R-Squared values of 0.9656, 0.9926, 0.964, and 0.951respectively. The isothermal results emphasize the significance of physisorption and chemisorption in concentration outcomes. Response surface methodology (RSM) and artificial neural networks (ANN) are employed to optimize the removal efficiency. RSM models the efficiency and facilitates numerical optimization, while the ANN model is optimized using the moth search algorithm (MSA) for optimal results. Highlights: 1.The Fe0–Cu composite, when combined with activated carbon from Bagasse Pulp (CH), exhibited the most effective decolorization effectiveness for anionic colours present in wastewater.2.The utilization of composites presents a promising opportunity for efficient dye removal due to its cost-effectiveness and environmentally sustainable nature. 3.The utilization of response surface approach and artificial neural network modelling improves the efficacy of removal processes and treatment techniques. © 2023, The Author(s).
Commercial Versus Natural Activated Carbon Fabricated Sheets: Applied to Dyes Removal Application
Industrial dyes are considered one of the main causes of increased water pollution of water. Many businesses, such as steel and paper, are located along riverbanks because they require large amounts of water in their manufacturing processes, and their wastes, which contain acids, alkalis, dyes, and other chemicals, are dumped and poured into rivers as effluents. For example, chemical enterprises producing aluminum emit a significant quantity of fluoride into the air and effluents into water bodies. Fertilizer facilities produce a lot of ammonia, whereas steel plants produce cyanide. Many nations consider employing wastewater treatment plants using physical, biological, and chemical methods to clean the wastewater to address environmental crises. The treated water can be used for targeting the irrigation systems in its majority, as it is biologically acceptable for that specific use, industrial dyes are considered one of the leading causes of increased water pollution of water. Many businesses, such as steel and paper, are located along riverbanks because they require large amounts of water in their manufacturing processes, and their wastes, which contain acids, alkalis, dyes, and other chemicals, are dumped and poured into rivers as effluents. For example, chemical enterprises producing aluminum emit a significant quantity of fluoride into the air and effluents into water bodies. Fertilizer facilities produce much ammonia, whereas steel plants produce cyanide. Chromium salts are used in. Many nations consider employing wastewater treatment plants using physical, biological, and chemical methods to clean the wastewater to address environmental crises. The treated water can target the majority of irrigation systems, as it is biologically acceptable for that specific use, which economizes the use of freshwater sources for municipal use. This study presents a novel method for fabricating an efficient adsorbent sheet for wastewater treatment. The sheets are fabricated by combining sugarcane bagasse pulp as a scaffold with commercial, naturally activated carbon, and bimetallic-prepared adsorbents. Sugarcane bagasse is utilized in producing activated carbon because of its high carbon contents, availability, and low cost. The prepared composite sheets are synthesized and investigated for pollutants removal of crystal violet (CV), methyl orange (MO), and Chromium (CI) dyes. Different weight ratios of activated carbon are used to form a bio-composite mixed sheet. The formed sheets’ morphology is performed via a high scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). To determine the adsorption mechanism, the intra-particle diffuse screening experiment is used to test the experimental data. All the prepared sheets can retain the pollutants, with the best removal efficiency of 98% for methyl orange adsorption onto the bio-composite mixed sheet. The results of the parameter (time, concentration, and dose) sets provided valuable proof that the adsorption of methyl orange onto the bio-composite sheet mixed with naturally activated carbon is an endothermic phenomenon involving physical adsorption. © 2024 Wiley-VCH GmbH.