Chaos-Based Image Encryption Using DNA Manipulation and a Modified Arnold Transform

Digital images, which we store and communicate everyday, may contain confidential information that must not be exposed to others. Numerous researches are interested in encryption, which protects the images from ending up in the hands of unauthorized third parties. This paper proposes an image encryption scheme using chaotic systems, DNA manipulation, and a modified Arnold transform. Both DNA manipulation and hyperchaotic Lorenz system are utilized in the substitution of the images’ pixel values. An additional role of hyperchaotic Lorenz system is that it generates the random numbers required within the DNA manipulation steps. DNA cycling is implemented based on simple DNA coding rules and DNA addition and subtraction rules with modulus operation. The modified Arnold transform alters the pixels’ positions, where it guarantees effective pixel permutation that never outputs the same input pixels arrangement again. The proposed design is simple and amenable for hardware realization. Several well established performance evaluation tests including statistical properties of the encrypted image, key space, and differential attack analysis were conducted for several images. The proposed scheme passed the tests and demonstrated good results compared to several recent chaos-based image encryption schemes. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Registerless Multiplierless YCoCg-R and YCoCg Color Space Converters Hardware Implementation

Multimedia data, e.g., images and videos, are widely used over the internet and on computers. Image processing applications require color space conversion to be able to deal with these types of data more efficiently. This paper investigates three color space conversions and proposes simplified combinational hardware designs and FPGA realizations for RGB to YCoCg-R and YCoCg color spaces encoders and decoders and compares them to their sequential counterparts. The proposed hardware design for the encoders and decoders uses only adders and subtractors without any registers or multipliers. The proposed YCoCg-R converter exhibits better resources utilization compared to implementing the design using shift registers, where it uses 56.3% and 72.1% less LUTs and FFs, respectively. Similarly for the YCoCg color space, the combinational design used 48.1% less LUTs and 67.8% less FFs than its sequential counterpart. © 2022 IEEE.

An Efficient Multi-Secret Image Sharing System Based on Chinese Remainder Theorem and Its FPGA Realization

Multi-Secret Image Sharing (MSIS) is important in information security when multiple images are shared in an unintelligible form to different participants, where the images can only be recovered using the shares from participants. This paper proposes a simple and efficient ( n,n )-MSIS system for colored images based on XOR and Chinese Remainder Theorem (CRT), where all the n share are required in the recovery. The system improves the security by adding dependency on the input images to be robust against differential attacks, and by using several delay units. It works with even and odd number of inputs, and has a long sensitive system key design for the CRT. Security analysis and a comparison with related literature are introduced with good results including statistical tests, differential attack measures, and key sensitivity tests as well as performance analysis tests such as time and space complexity. In addition, Field Programmable Gate Array (FPGA) realization of the proposed system is presented with throughput 530 Mbits/sec. Finally, the proposed MSIS system is validated through software and hardware with all statistical analyses and proper hardware resources with low power consumption, high throughput and high level of security. © 2013 IEEE.