Parameter identification of Li-ion battery models is important for efficiently charge and discharge the most widely used energy storage devices. In this work, we propose a simplified battery model with a parameter identification method for time-domain charging and discharging. Staircase PotentioElectrochemical Impedance Spectroscopy technique (SPEIS) is chosen to characterize the batteries during charging and discharging cycles at different voltage steps values. Marine Predator Algorithm (MPA) is used to identify the proposed model parameters on two commercial Li-ion coin-shaped batteries. The proposed model shows very good matching with the experiments with absolute current error less than 10 4. Hence, the proposed model can be used for real-time applications to predict the battery’s behavior under different operating conditions. © 2021 IEEE.
On Fractional-order Capacitive Wireless Power Transfer System
Wireless power transfer is becoming an increasingly viable solution for the electrical powering of various electronic gadgets. However, precise outputs are not guaranteed with integer systems, so fractional-order capacitors are vital. This paper studies a four-plate fractional capacitive power transfer system by varying six orders of capacitors between the plates along with the load resistance. A mathematical model based on a 4× 4 mutual fractional capacitance matrix is established for equidistantly placed four identical metal plates. Moreover, the chosen circuit topology is identified and analyzed based on the proposed model. © 2022 IEEE.
Do the Bio-impedance Models Exhibit Pinched Hysteresis?
Recently, pinched hysteresis has been found in the electrical modelling of regular plant tissues. Usually, the biological tissues are characterized in the frequency domain using bio-impedance analyzers without investigating the time domain, which would show the pinched hysteresis. In this paper, the current-voltage analysis of some of the widely known electrical bio-impedance models is studied. The investigated models are the single dispersion Cole-impedance model, the double dispersion Cole-impedance model and the fractional-order simplified Hayden model to prove that these models can not exhibit pinched hysteresis. It is proved mathematically in this paper that there are no pinch-off points that would exist in these models. These results are verified with numerical simulations of three different plants: tomato, carrot and banana, concluding that the bioimpedance modelling needs a nonlinear element to model the pinched hysteresis in the current-voltage behaviour of these tissues. © 2020 IEEE.
A Universal Fractional-Order Memelement Emulation Circuit
This paper proposes a current-/voltage-controlled universal emulator that can realize any fractional-order memelements (FOME). The proposed emulator consists of second-generation current conveyors (CCII) block, two switches, and a multiplier/divider block. The first switch controls the emulator mode (voltage or current), while, the other controls the type of the emulated FOME. The influence of the fractional-order capacitor (FOC) on the pinched hysteresis loop (PHL) area, is discussed which increases the controllability on the double loop area and the working frequency range. Numerical and PSPICE simulations are presented for selected cases to prove the theoretical findings. © 2019 IEEE.
On Series Connections of Fractional-Order Elements and Memristive Elements
This paper proposes a current-controlled fractional-order memristor emulator based on one active building block. The emulator consists of a multiplication mode current conveyor (MMCC) block with three passive elements. Additionally, the series connection of fractional-order inductor (FOI) and fractional-order capacitor (FOC) with memristive elements in the i-v plane is demonstrated numerically for different cases. Changing the order of the FOC or FOI and its effect on the pinched hysteresis loop area are investigated, which improve the controllability of the double loop area, the location of the pinched point, and the operating frequency range. Numerical, PSPICE simulation results, and experimental verification are investigated for different cases to approve the theoretical findings. Moreover, a sensitivity analysis using Monte Carlo simulations for the tolerance of the discrete components of the memristor emulator is investigated. © 2020 IEEE.
Memristor-CNTFET based Ternary Comparator unit
This paper proposes a new design for ternary logic comparator unit based on memristive threshold logic concept. To provide high-performance design, integrating memristor and Carbon Nano-Tube Field-Effect Transistor, CNTFET, is used. A comparison with other related work is presented to discuss performance aspects. It shows that performance has been improved by 75% compared with the other related work. Therefore, the proposed design is very promising to build high-performance full ternary ALU memristor-based unit. © 2018 IEEE.
Capacitive Power Transfer Modeling of Charging Inner-body Devices
Wireless power transfer (WPT) is highly desirable for applications with battery restrictions, such as biomedical applications. For example, in the case of implantable devices, power is transmitted through the human body, which has dielectric characteristics that must be considered during the design of the WPT system. This paper examines capacitive power transfer through the human body and formulates the complete WPT system, including the human body model. The power delivered to the implantable device is also analyzed. Finally, the system efficiency is discussed under different body and load scenarios to determine the optimal transmission frequency and load impedance. © 2023 IEEE.
CNTFET-based Approximate Ternary Adder Design
Multiple-Valued Logic (MVL) offers better data representation allowing higher information processing within the same amount of digits. With a trade-off in accuracy, approximate computation is a method to improve the power, size, and speed of digital circuits. This paper presents the design of CNTFET-based ternary half adder, full adder, 2-trit carry ripple adder, and 4trit carry ripple adder with different accuracies. The proposed designs are implemented using HSPICE tool and simulated for power consumption, delay, and error analysis. The trade-off between the transistor count and the computation accuracy of the propsoed designs is discussed. Simulation results show that the approximate and corrected approximate designs could significantly improve power-delay product and transistor count compared to their accurate designs. For some cases, approximate and corrected approximate designs have up to 19.8 × improvement in the transistors count and up to 295.3 × improvement in PDP compared to their accurate designs. The corrected designs outperform the approximate ones in terms of accuracy while achieving around 1.5 × improvement in AED. © 2023 IEEE.
Battery Modeling with Mittag-Leffler Function
In various areas of life, rechargeable lithium-ion batteries are the technology of choice. Equivalent circuit models are utilized extensively in characterizing and modeling energy storage systems. In real-time applications, several generic-based battery models are created to simulate the battery’s charging and discharging behavior more accurately. In this work, we present two generic battery models based on Mittag-Leffler function using a generic Standard battery model as a reference. These models are intended to fit the continuous discharging cycles of lithium-ion, Nickel-cadmium, and Nickel-metal hydride batteries, as well as one set from the NASA randomized battery usage dataset. We formulate the parameter identification as an optimization problem, solved with Marine Predator Algorithm. The optimized models show very good matching against the measured data. © 2024 IEEE.
Voltage-controlled M-M relaxation Oscillator
This paper discusses voltage-controlled M-M relaxation oscillator with analytical and circuit simulations