Different generalized filters topologies are proposed in the fractional-order domain. Three voltage-mode topologies and one current-mode topology are used to realize several types of fractional-order filters by applying different admittances combinations. The proposed topologies are designed using a single second-generation current conveyor (CCII-) and two fractional-order capacitors, which add more degrees of freedom for the design. The generalized Fractional Transfer Function (FTF) for each proposed topology is investigated where the fractional-order low-pass, band-pass, high-pass, and notch filters with ?+?)-order are realized. The Numerical results are provided where the stability analysis is presented for different cases. Also, the PSPICE simulations are presented to prove the theoretical findings of selected cases. © 2020 IEEE.
A Comparative Study of Different Human Skin Impedance Models
This paper presents a comparative study of different human skin impedance models using meta-heuristic optimization Flower Pollination Algorithm (FPA)
Modeling woody plant tissue using different fractional-order circuits
This chapter presents results on the most suitable bio-impedance circuits for modeling woody plants. The modified double-shell, the modified triple Cole-Cole, and the traditional wood circuit models are compared for fitting experimentally measured data. Consequently, a modified circuit model is proposed. This model gives the best results for all interelectrode spacing distances when compared to the other circuits. All impedance data have been measured using the research-grade SP150 electrochemical station in the frequency range 0.1 Hz to 200 kHz. The fitting is done using the Zfit of the impedance analyzer SP150. © 2022 Elsevier Inc. All rights reserved.
Plant Tissue Modelling Using Power-Law Filters
Impedance spectroscopy has became an essential non-invasive tool for quality assessment measurements of the biochemical and biophysical changes in plant tissues. The electrical behaviour of biological tissues can be captured by fitting its bio-impedance data to a suitable circuit model. This paper investigates the use of power-law filters in circuit modelling of bio-impedance. The proposed models are fitted to experimental data obtained from eight different fruit types using a meta-heuristic optimization method (the Water Cycle Algorithm (WCA)). Impedance measurements are obtained using a Biologic SP150 electrochemical station, and the percentage error between the actual impedance and the fitted models’ impedance are reported. It is found that a circuit model consisting of a combination of two second-order power-law low-pass filters shows the least fitting error. © 2022 by the authors.
Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms
Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared with three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, and Fractional-order Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem. Experiments are conducted on two samples of three different medical plant species from the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the range of 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to verify the efficiency of the proposed models in modeling the plant stem tissue. The proposed models give the best results in all inter-electrode spacing distances. Four different metaheuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems. © 2022, The Author(s).
A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using Meta-heuristic Optimization Algorithms
A differentiator-based set up is proposed as an alternative solution to measure bio-impedance