DISH: Digital image steganography using stochastic-computing with high-capacity

Stochastic computing is a relatively new approach to computing that has gained interest in recent years due to its potential for low-power and high-noise environments. It is a method of computing that uses probability to represent and manipulate data, therefore it has applications in areas such as signal processing, machine learning, and cryptography. Stochastic steganography involves hiding a message within a cover image using a statistical model. Unlike traditional steganography techniques that use deterministic algorithms to embed the message, stochastic steganography uses a probabilistic approach to hide the message in a way that makes it difficult for an adversary to detect. Due to this error robustness and large bit streams stochastic computing, they are well suited for high capacity and secure image steganography. In this paper, as per the authors’ best knowledge, image steganography using stochastic computing based on linear feedback shift register (LFSR) is proposed for the first time. In the proposed technique, the cover image is converted to stochastic representation instead of the binary one, and then a secret image is embedded in it. The resulting stego image has a high PSNR value transmitted with no visual trace of the hidden image. The final results are stego image with PSNR starting from 30 dB and a maximum payload up to 40 bits per pixel (bpp) with an effective payload up to 28 bpp. The proposed method achieves high security and high capability of the number of stored bits in each pixel. Thus, the proposed method can prove a vital solution for high capacity and secure image steganography, which can then be extended to other types of steganography. © 2024, The Author(s).

Fractional order systems: An overview of mathematics, design, and applications for engineers

Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.

Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers: Volume 1 in Emerging Methodologies and Applications in Modelling

Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.

Fractional-Order Design: Devices, Circuits, and Systems: Volume 3 in Emerging Methodologies and Applications in Modelling

Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource. © 2022 Elsevier Inc. All rights reserved.

Fractional-Order Modeling of Dynamic Systems with Applications in Optimization, Signal Processing and Control: Volume 2 in Emerging Methodologies and Applications in Modelling

Fractional-order Modelling of Dynamic Systems with Applications in Optimization, Signal Processing and Control introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.