Generic Hardware Realization of K Nearest Neighbors on FPGA

K Nearest Neighbors (KNN) algorithm is a straight-forward yet powerful Machine Learning (ML) tool widely used in classification, clustering, and regression applications. In this work, KNN is applied, with three distance metrics, to classify different datasets, experimentally testing each distance metric effect on the classification performance. A static K is applied for the whole dataset optimally chosen based on a 5-fold cross-validation. A reconfigurable hardware realization on field programmable gate array (FPGA) of each distance metric applying selection sort algorithm is proposed. The FPGA realization reaches a throughput up to 4.44 Gbit/sec while only occupying 1% of the Genesys 2 Kintex-7 board area. The algorithm managed to classify all the tested datasets with above 90% accuracy. © 2022 IEEE.

Generalized ?+?-order Filter Based on Single CCII

Different generalized filters topologies are proposed in the fractional-order domain. Three voltage-mode topologies and one current-mode topology are used to realize several types of fractional-order filters by applying different admittances combinations. The proposed topologies are designed using a single second-generation current conveyor (CCII-) and two fractional-order capacitors, which add more degrees of freedom for the design. The generalized Fractional Transfer Function (FTF) for each proposed topology is investigated where the fractional-order low-pass, band-pass, high-pass, and notch filters with ?+?)-order are realized. The Numerical results are provided where the stability analysis is presented for different cases. Also, the PSPICE simulations are presented to prove the theoretical findings of selected cases. © 2020 IEEE.

Generalized family of fractional-order oscillators based on single CFOA and RC network

This paper presents a generalized family of fractional-order oscillators based on single CFOA and RC network. Five RC networks are investigated with their general state matrix, and design equations. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are introduced in terms of the fractional order parameters. They add extra degrees of freedom which in turn increase the design flexibility and controllability that is proved numerically. Spice simulations are introduced to validate the theoretical findings. © 2017 IEEE.

Dynamics of fractional and double-humped logistic maps versus the conventional one

This paper presents the dynamic analysis of two discrete logistic chaotic maps versus the conventional map. The first map is the fractional logistic map with the extra degrees of freedom provided by the added number of variables. It has two more variables over the conventional one. The second map is the double-humped logistic map. It is a fourth-order map which increases the non-linearity over the conventional one. The dynamics of the three maps are discussed in details, including mathematical derivations of fixed points, stability analysis, bifurcation diagrams and the study of their chaotic regions. The chaotic behavior of the three maps, is investigated using the Maximum Lyapunov exponent (MLE). © 2017 IEEE.

Toward Portable Bio-impedance devices

Bio-impedance measurement has been used as an indicator for specific physical and chemical changes in food products, fruits and vegetables, cancer detection and other applications. In this paper, a portable wireless bio-impedance measurement embedded system, based on the AD5933 chip, is introduced. The system is calibrated using a parallel RC network and the industry standard electrochemical station BioLogic SP-150. The module can be used in many impedance measuring applications. © 2019 IEEE.

Current feedback operational amplifier (CFOA) based fractional order oscillators

This paper presents a study of fractional order oscillators based on current feedback operational amplifiers (CFOA). Two general cases have been discussed for the oscillation frequency and condition with the use of two fractional order elements of different orders. Design procedure for the two general cases is illustrated with numerical discussions. Circuit simulations for some special cases are presented to validate the theoretical findings. The simulations have been done using Ad844 commercial CFOA model © 2014 IEEE.

Fractional order oscillators with single non-zero transmission matrix element

This paper presents a study of fractional order oscillator design based on a matrix. The presented oscillator consists of a general two port network and three impedances. Only two port with single element in its transmission matrix is discussed which gives four possible networks. Different combinations for one element have been investigated. The impedances associated with the studied networks are series or parallel connection of resistors in addition to fractional order capacitors. The characteristic equation, oscillation frequency and condition for each combination are introduced. Numerical discussions of the presented oscillators with Spice simulations are presented to validate the theoretical findings. © 2015 IEEE.

Fractional-order inverting and non-inverting filters based on CFOA

This paper introduces a study to generalize the design of a continuous time filters into the fractional order domain. The study involves inverting and non-inverting filters based on CFOA where three responses are extracted which are high-pass, band-pass and low-pass responses. The proposed study introduces the generalized formulas for the transfer function of each response with different fractional orders. The fractional-order filters enhance the design flexibility and controllability due to the extra degree of freedom provided by the fractional order parameters. The general fundamentals of these filters are presented by calculating the cutoff frequency equation. Different numerical solutions for the generalized fractional order filters are introduced. Stability discussion is presented for different fractional order cases. Spice simulations results are introduced to validate the theoretical findings. © 2016 IEEE.

Fractional-order oscillator based on single CCII

This paper presents a generalization of well-known phase shift oscillator based on single CCII into the fractional order domain. The general state matrix, characteristic equation and design equations are presented. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are introduced in terms of the fractional order parameters. These parameters add extra degrees of freedom which in turn increase the design flexibility and controllability. Numerical discussion of five special cases is investigated including the integer case. Spice simulations and experimental results are introduced to validate the theoretical findings with stability discussion. © 2016 IEEE.

Analog fault diagnosis by inverse problem technique

A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.