Adsorption as an Emerging Technology and Its New Advances of Eco-Friendly Characteristics: Isotherm, Kinetic, and Thermodynamic Analysis

Water contamination with paints causes a colour agent to the water that negatively affects the environment, organisms, and humans. Different physicochemical processes are applied for wastewater treatment; however, they have many drawbacks such as high cost, generating toxic waste, and non-effective at low concentrations. Adsorption is considered a promising technique for pollutant removal from polluted wastewater. Commercial activated carbon, nano-materials, and natural biological materials are used as adsorbents in adsorption. This chapter focuses on discussing the adsorption process, the factors affecting the adsorption, different adsorption materials, and the isothermal, kinetic, and thermodynamic models. © 2023 selection and editorial matter, Irene Samy Fahim and Lobna A. Said; individual chapters, the contributors.

Applied Techniques for Wastewater Treatment: Physicochemical and Biological Methods

Polluted water is one of the significant challenges facing the world nowadays, especially with the noticed water shortage recorded in the last period. Different treatment methods, physicochemical and biological, were presented for pollutant removal from polluted wastewater. This review discusses the treatment methods starting from the biological part to help reduction of organics, which are solids that appear in the wastewater. After that, the physicochemical techniques will be discussed as a second part of the treatment process to minimize the heavy metal, dyes, and other pollutants. Additionally, filtration techniques and advanced treatment processes will be discussed as the final steps in the water treatment systems and how they were used to finally sterilize the water after the treatment processes. © 2023 selection and editorial matter, Irene Samy Fahim and Lobna A. Said; individual chapters, the contributors.

A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN

The textile business is one of the most hazardous industries since it produces several chemicals, such as dyes, which are released into water streams with ef-fluents. For the survival of the planet’s life and the advancement of humanity, water is a crucial resource. One of the anthropogenic activities that pollute and consume water is the textile industry. Thus, the purpose of the current effort is to Apply coagulation as a Physico-chemical and biological treatment strat-egy with different techniques and mechanisms to treat the effluent streams of textile industries. The discharge of these effluents has a negative impact on the environment, marine life, and human health. Therefore, the treatment of these effluents before discharging is an important matter to reduce their adverse ef-fect. Many physico-chemical and biological treatment strategies for contaminants removal from polluted wastewater have been proposed. Coagulation is thought to be one of the most promising physico-chemical strategies for removing con-taminants and colouring pollutants from contaminated water. Coagulation is accompanied by a floculation process to aid precipitation, as well as the collection of the created sludge following the treatment phase. Different commercial, and natural coagulants have been applied as a coagulants in the process of coagulation. Additionally, many factors such as; pH, coagulant dose, pollu-tants concentration are optimized to obtain high coagulants removal capacity. This review will discuss the coagulation process, coagulant types and aids in addition to the factors affecting the coagulation process. Additionally, a brief comparison between the coagulation process, and the other processes; princi-ple, advantages, disadvantages, and their efficiency were discussed throgh the review. Furthermore, it discusses the models and optimization techniques used for the coagulation process including response surface methodology (RSM), ar-tificial neural network (ANN), and several metaheuristic algorithms combined with ANN and RSM for optimization in previous work. The ANN model has more accurate results than RSM. The ANN combined with genetic algorithm gives an accurate predicted optimum solution. © 2023 The Authors

Potentials of algae-based activated carbon for the treatment of M.orange in wastewater

Activated carbon is a promising material with high efficiency in dye removal from polluted wastewater. However, commercial activated carbon is expensive and generates black color in the medium. Therefore, searching for low-cost, eco-friendly activated carbon sources such as agricultural wastes and algal biomasses is essential. Hence, this study is directed to prepare the physical and the H3PO4 chemical activated carbon from the algae ”Sargassum dent folium” and the raw algae itself and apply it for Methyl Orange (M. orange) removal from contaminated wastewater and compare its performance with the commercial activated carbon. First, adsorbent materials are prepared and involved in the optimization process for M. orange removal using some preliminary experiments, followed by Response Surface Method-ology (RSM) and Artificial Neural Network (ANN). Finally, Isotherm and kinetics are studied to explain the adsorption mechanism. In contrast to other materials, results show that physical algae-activated carbon achieves the maximum removal efficiency of 96.687%. These results are obtained from ANN combined with Moth Search Algorithm (MSA), representing the most effective model for achieving the highest M. orange removal efficiency from Physical algae activated carbon. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 RE%, 88.5 indicated RSM RE%, and 85.9431 predicted ANN RE%. The best observed and predicted removal efficiencies for the H3PO4 chemical activated carbon are 89.6157 RE%, 82.38 predicted RSM RE%, and 89.5442 predicted ANN RE%. The best experimental and predicted removal efficiencies for the physical-activated carbon are 94.7935 RE%, 95.49 indicated RSM RE%, and 95.4298 predicted ANN RE%. The best observed and predicted removal efficiencies for the commercial-activated carbon are 92.2659 RE%, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 %RE, 88.5 predicted RSM RE %, and 85.9431 expected ANN RE%. For the H3PO4 chemical activated carbon, the best experimental and predicted removal efficiencies are 89.6157%RE, 82.38 indicated RSM RE%, and 89.5442 predicted ANN RE%. For the physical-activated carbon, the best observed and predicted removal efficiencies are 94.7935 %RE, 95.49 predicted RSM RE%, and 95.4298 indicated ANN RE%. For the commercial-activated carbon, the best experimental and predicted removal efficiencies are 92.2659 %RE, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It then compares the results to the effectiveness of commercial activated carbon. In the state of the raw algae, Temkin and Langmuir isotherm models best suit the data, while Temkin agrees well with the data from physical-activated carbon. Temkin and Freundlich’s models are fitted with the H3PO4 chemical activated carbon. The model that fits the raw algae physically activated carbon and H3PO4 chemical-activated carbon the best is pseudo-second-order kinetics. Future research could examine the produced activated carbon-based algae’s capacity to extract more contaminants from contaminated wastewater. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It next compares the results to the effectiveness of commercial activated carbon. © 2023 The Authors