Two-port oscillators based on three impedance structure

This paper investigates the general analysis of the three impedance common B oscillators based on two port network. The concept is applied for 12 different impedance structures to obtain a second order oscillator where the condition and the frequency of oscillation are studied for each case. Then three special cases of two-port networks whose transmission matrices contain two non-zero elements are studied which represent MOS, BJT and gyrator circuits where six cases only can be adapted to have oscillation using gyrators. The effect on non-idealities of the current conveyor used to build gyrator on the condition and the frequency of oscillation is also studied. Finally three different cases are validated using the circuit simulations which match the theoretical study. © 2014 IEEE.

Generalized delayed logistic map suitable for pseudo-random number generation

This paper presents the generalization of a delayed version of the logistic map. The effect of the added two general parameters is studied, which offers the option of having three different maps. The dynamic behavior of the vertical, zooming and the general map is analyzed. The study of the fixed points, stability ranges and bifurcation diagram of the delayed logistic map at hand is detailed in this work. The flow of the system behavior from stability to chaos is also presented with its transient response as well as its phase plane portraits. Moreover, using the general parameters, the option of designing any specific map is validated by some design examples, which makes it more optimal for any specific applications. The added general parameters offer increased randomness with controllability of the map design, making it more suitable for pseudo-random sequence generators which are used in image encryption algorithms and in secure communication transfer. © 2015 IEEE.

Review on Coral Reef Regeneration Methods through Renewable Powered Electrotherapy

The restoration of coral reef population in coastal regions is currently a growing concern. Many attempts have been made to apply new approaches to limit the deterioration of coral reefs, and to accelerate the growth of new reefs to protect coastal areas and ecosystems using available renewable energy sources. This paper highlights the new approaches and their various advantages and limitations in tidal and wave energy. The paper also suggests improvements to some of those systems using the recent developments in soft robotics, especially the use of biomimetic fish as a feasible support platform for the monitoring and maintenance of the power generation and potential restoration systems. © 2023 IEEE.

Pixel-based Visual Secret Sharing Using Lorenz System

(n, n)-Visual Secret Sharing (VSS) allows a user to send an image in the form of shares to different participants. Every share can not reveal the secret alone, and only all shares together can reveal the secret with fast recovery. This paper proposes a pixel-based (n, n)-VSS system, where to share a pixel from the secret image, (n – 1) random pixels are generated from the Lorenz chaotic system for a varying set of (n – 1) shares. Then, the nth pixel is calculated for a random share using the secret pixel and the generated (n – 1) random pixels. The system is efficient, lossless, implemented for grayscale and color images, and has a simple XOR-based recovery scheme. It passed several security analysis tests and is robust against noise attacks. Moreover, performance analysis and comparisons with other VSS systems are presented, showing good results. © 2023 ACM.

Capacitive Power Transfer Modeling of Charging Inner-body Devices

Wireless power transfer (WPT) is highly desirable for applications with battery restrictions, such as biomedical applications. For example, in the case of implantable devices, power is transmitted through the human body, which has dielectric characteristics that must be considered during the design of the WPT system. This paper examines capacitive power transfer through the human body and formulates the complete WPT system, including the human body model. The power delivered to the implantable device is also analyzed. Finally, the system efficiency is discussed under different body and load scenarios to determine the optimal transmission frequency and load impedance. © 2023 IEEE.

CNTFET-based Approximate Ternary Adder Design

Multiple-Valued Logic (MVL) offers better data representation allowing higher information processing within the same amount of digits. With a trade-off in accuracy, approximate computation is a method to improve the power, size, and speed of digital circuits. This paper presents the design of CNTFET-based ternary half adder, full adder, 2-trit carry ripple adder, and 4trit carry ripple adder with different accuracies. The proposed designs are implemented using HSPICE tool and simulated for power consumption, delay, and error analysis. The trade-off between the transistor count and the computation accuracy of the propsoed designs is discussed. Simulation results show that the approximate and corrected approximate designs could significantly improve power-delay product and transistor count compared to their accurate designs. For some cases, approximate and corrected approximate designs have up to 19.8 × improvement in the transistors count and up to 295.3 × improvement in PDP compared to their accurate designs. The corrected designs outperform the approximate ones in terms of accuracy while achieving around 1.5 × improvement in AED. © 2023 IEEE.

A Secured Lossless Visual Secret Sharing for Color Images Using Arnold Transform

Nowadays, with the rapid growth in information, a fast and secure method is eagerly needed to share images. (n, n)-Visual Secret Sharing (VSS) is used to share a secret image into n shares, where the secret can only be recovered using all the n shares and the recovery must be fast with low computational complexity. This paper proposes a secured lossless (n, n)-VSS system based on Arnold transform and pixel vectorization suitable to be used with binary, grayscale and color images. Multiple security tests were performed such as entropy, correlation, Mean Squared Error (MSE), National Institute of Standards and Technology (NIST) SP-800-22 statistical suite, and differential attacks, which demonstrate the good security of the proposed system. In addition, the time complexity and runtime of the recovery system indicate good efficiency. © 2022 IEEE.