Water contamination with paints causes a colour agent to the water that negatively affects the environment, organisms, and humans. Different physicochemical processes are applied for wastewater treatment; however, they have many drawbacks such as high cost, generating toxic waste, and non-effective at low concentrations. Adsorption is considered a promising technique for pollutant removal from polluted wastewater. Commercial activated carbon, nano-materials, and natural biological materials are used as adsorbents in adsorption. This chapter focuses on discussing the adsorption process, the factors affecting the adsorption, different adsorption materials, and the isothermal, kinetic, and thermodynamic models. © 2023 selection and editorial matter, Irene Samy Fahim and Lobna A. Said; individual chapters, the contributors.
Applied Techniques for Wastewater Treatment: Physicochemical and Biological Methods
Polluted water is one of the significant challenges facing the world nowadays, especially with the noticed water shortage recorded in the last period. Different treatment methods, physicochemical and biological, were presented for pollutant removal from polluted wastewater. This review discusses the treatment methods starting from the biological part to help reduction of organics, which are solids that appear in the wastewater. After that, the physicochemical techniques will be discussed as a second part of the treatment process to minimize the heavy metal, dyes, and other pollutants. Additionally, filtration techniques and advanced treatment processes will be discussed as the final steps in the water treatment systems and how they were used to finally sterilize the water after the treatment processes. © 2023 selection and editorial matter, Irene Samy Fahim and Lobna A. Said; individual chapters, the contributors.
A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN
The textile business is one of the most hazardous industries since it produces several chemicals, such as dyes, which are released into water streams with ef-fluents. For the survival of the planet’s life and the advancement of humanity, water is a crucial resource. One of the anthropogenic activities that pollute and consume water is the textile industry. Thus, the purpose of the current effort is to Apply coagulation as a Physico-chemical and biological treatment strat-egy with different techniques and mechanisms to treat the effluent streams of textile industries. The discharge of these effluents has a negative impact on the environment, marine life, and human health. Therefore, the treatment of these effluents before discharging is an important matter to reduce their adverse ef-fect. Many physico-chemical and biological treatment strategies for contaminants removal from polluted wastewater have been proposed. Coagulation is thought to be one of the most promising physico-chemical strategies for removing con-taminants and colouring pollutants from contaminated water. Coagulation is accompanied by a floculation process to aid precipitation, as well as the collection of the created sludge following the treatment phase. Different commercial, and natural coagulants have been applied as a coagulants in the process of coagulation. Additionally, many factors such as; pH, coagulant dose, pollu-tants concentration are optimized to obtain high coagulants removal capacity. This review will discuss the coagulation process, coagulant types and aids in addition to the factors affecting the coagulation process. Additionally, a brief comparison between the coagulation process, and the other processes; princi-ple, advantages, disadvantages, and their efficiency were discussed throgh the review. Furthermore, it discusses the models and optimization techniques used for the coagulation process including response surface methodology (RSM), ar-tificial neural network (ANN), and several metaheuristic algorithms combined with ANN and RSM for optimization in previous work. The ANN model has more accurate results than RSM. The ANN combined with genetic algorithm gives an accurate predicted optimum solution. © 2023 The Authors
Preparation and Characterization of nZVI, Bimetallic Fe 0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-F e 0-Cu for Anionic Methyl Orange Dye Removal
Nano zero-valent iron (nZVI), bimetallic Nano zero-valent iron-copper (Fe 0- Cu), and fava bean activated carbon-supported with bimetallic Nano zero-valent iron-copper (AC-F e 0-Cu) were prepared and characterized by DLS, FT-IR, XRD, and SEM. The influence of the synthesized adsorbents on the adsorption and removal of soluble anionic methyl orange (M.O) dye was investigated using UV-V spectroscopy. The influence of numerous operational parameters was studied at varied pH (3–9), time intervals (15–180 min), and dye concentrations (25–1000 ppm) to establish the best removal conditions. The maximum removal efficiency of M.O. using the prepared adsorbent materials reached about 99%. The removal efficiency is modeled using response surface methodology (RSM). The Bimetallic Fe -Cu, the best experimental and predicted removal efficiency is 96.8% RE. For the H2SO4 chemical AC- Fe -Cu, the best experimental and removal efficiency is 96.25% RE. The commercial AC-Fe0–Cu, the best experimental and predicted removal efficiency is 94.93%RE. This study aims to produce low-cost adsorbents such as Bimetallic Fe0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-Fe0-Cu to treat the industrial wastewater from the anionic methyl orange (M.O) dye and illustrate its ability to compete H2SO4 chemical AC-Fe0-Cu, and commercial AC-Fe0-Cu. © 2023, The Author(s).
Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling
Water contamination with colours and heavy metals from textile effluents has harmed the ecology and food chain, with mutagenic and carcinogenic effects on human health. As a result, removing these harmful chemicals is critical for the environment and human health. Various standard physicochemical and biological treatment technologies are used; however, there are still some difficulties. Adsorption is described as a highly successful technology for removing contaminants from textile-effluents wastewater compared to other methods. Several adsorbent materials, including nanomaterials, natural materials, and biological biomasses, are identified as effective adsorbents for textile effluents. Activated carbon preparation from these different adsorbents is an excellent pre-treatment to remove the adsorption capacity. Therefore, through this study various adsorbent types, especially activated carbon adsorbents will be discussed in addition to the factors affecting adsorption and models applied for optimising the adsorption process. © 2022