Preparation and Characterization of nZVI, Bimetallic Fe 0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-F e 0-Cu for Anionic Methyl Orange Dye Removal

Nano zero-valent iron (nZVI), bimetallic Nano zero-valent iron-copper (Fe 0- Cu), and fava bean activated carbon-supported with bimetallic Nano zero-valent iron-copper (AC-F e 0-Cu) were prepared and characterized by DLS, FT-IR, XRD, and SEM. The influence of the synthesized adsorbents on the adsorption and removal of soluble anionic methyl orange (M.O) dye was investigated using UV-V spectroscopy. The influence of numerous operational parameters was studied at varied pH (3–9), time intervals (15–180 min), and dye concentrations (25–1000 ppm) to establish the best removal conditions. The maximum removal efficiency of M.O. using the prepared adsorbent materials reached about 99%. The removal efficiency is modeled using response surface methodology (RSM). The Bimetallic Fe -Cu, the best experimental and predicted removal efficiency is 96.8% RE. For the H2SO4 chemical AC- Fe -Cu, the best experimental and removal efficiency is 96.25% RE. The commercial AC-Fe0–Cu, the best experimental and predicted removal efficiency is 94.93%RE. This study aims to produce low-cost adsorbents such as Bimetallic Fe0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-Fe0-Cu to treat the industrial wastewater from the anionic methyl orange (M.O) dye and illustrate its ability to compete H2SO4 chemical AC-Fe0-Cu, and commercial AC-Fe0-Cu. © 2023, The Author(s).

Enhanced removal of crystal violet using rawfava bean peels, its chemically activated carbon compared with commercial activated carbon

Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Hence, this paper is directed at studying the removal of crystal violet using environmentally friendly, cost-effective adsorbent materials such as raw fava bean (RFP-H3F), and chemically activated carbon (H3F) in comparison to commercial activated carbon (CAC).Various characterization techniques are applied, such as XRD, FT-IR,and SEM analyses. Then, the process of optimizing is shown through some preliminary experiments and a Response Surface Methodology (RSM) experiment to find the best conditions for removing crystal violet efficiently. Results revealed that the raw fava bean peels and the commercial activated carbon have the maximum removal efficiency of 95 %, and 83 % respectively, after 180 min of contact time. It is hypothesized that raw fava bean peels (RFP) and chemically activated carbon using phosphoric acid RFP-H3F will exhibit comparable efficiency in removing crystal violet when compared to commercial activated carbon (CAC). Various characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR),and scanning electron microscopy (SEM), are applied to analyze the properties of the adsorbent materials. Afterwards, the optimization process is displayed through some preliminary experiments followed by a Response Surface Methodology (RSM) experiment to obtain the optimum conditions, which achieve high crystal violet removal efficiency. The results demonstrate that both raw fava bean peels and commercial activated carbon exhibit significant removal efficiencies, with raw fava bean peels achieving a maximum removal efficiency of 95 % and commercial activated carbon achieving 83 %. © 2023 The Authors

Bio-inspired adsorption sheets from waste material for anionic methyl orange dye removal

Abstract: Nano zero-valent iron (nZVI), bimetallic nano zero-valent iron-copper (Fe0–Cu), and Raw algae (sargassum dentifolium) activated carbon-supported bimetallic nano zero-valent iron-copper (AC-Fe0–Cu) are synthesized and characterized using FT-IR, XRD, and SEM. The maximum removal capacity is demonstrated by bimetallic activated carbon AC-Fe0–Cu, which is estimated at 946.5 mg/g capacity at the condition pH = 7, 30 min contact time under shaking at 120 rpm at ambient temperature, 200 ppm of M.O, and 1 g/l dose of raw algae-Fe0–Cu adsorbent. The elimination capability of the H3PO4 chemical AC-Fe0–Cu adsorbent is 991.96 mg/g under the conditions of pH = 3, 120 min contact time under shaking at 120 rpm at room temperature, 200 ppm of M.O, and 2 g/l doses of H3PO4 chemical AC-Fe0–Cu adsorbent. The Bagasse activated carbon adsorbent sheet achieves a removal capacity of 71.6 mg/g MO dye solution. Kinetic and isothermal models are used to fit the results of time and concentration experiments. The intra-particle model yields the best fit for bimetallic Fe0–Cu, AC-Fe0–Cu, H3PO4 chemical AC-Fe0–Cu and bagasse activated carbon(CH), with corrected R-Squared values of 0.9656, 0.9926, 0.964, and 0.951respectively. The isothermal results emphasize the significance of physisorption and chemisorption in concentration outcomes. Response surface methodology (RSM) and artificial neural networks (ANN) are employed to optimize the removal efficiency. RSM models the efficiency and facilitates numerical optimization, while the ANN model is optimized using the moth search algorithm (MSA) for optimal results. Highlights: 1.The Fe0–Cu composite, when combined with activated carbon from Bagasse Pulp (CH), exhibited the most effective decolorization effectiveness for anionic colours present in wastewater.2.The utilization of composites presents a promising opportunity for efficient dye removal due to its cost-effectiveness and environmentally sustainable nature. 3.The utilization of response surface approach and artificial neural network modelling improves the efficacy of removal processes and treatment techniques. © 2023, The Author(s).