Multi-Secret Image Sharing (MSIS) systems share multiple images to multiple participants in unintelligible forms that can be recovered using all the shares. This paper employs the concept of progressive secret sharing with MSIS to introduce a new system, where the number of used shares in the recovery process defines the quality of the recovered secrets. The proposed system works for any number of secret color images, and is lossless when all the shares are present. The Lorenz chaotic system, which is numerically solved using Euler method, is used as source of randomness to encrypt the secret images. Image encryption utilizes a long system key to perform the substitution and permutation stages. The system passes all security tests, including statistical analysis and key sensitivity, and it is also robust to noise and crop attacks. The analysis results are within the required ranges for a good encryption system, and they are better than those of the compared MSIS systems. © 2023 IEEE.
A Unified System for Encryption and Multi-Secret Image Sharing Using S-box and CRT
Multi-Secret Image Sharing (MSIS) is used when multiple images need to be shared to multiple participants, but the images can not be recovered without the presence of all shares. In this paper, a unified system for performing encryption and (n,n)-MSIS is proposed. While MSIS is based on the XOR operation, encryption combines the utilization of Chinese Remainder Theorem (CRT), SHA-256, and S-box for improved security. The same designed system is used for the generation of secret shares and the recovery of secret images. In addition, a sensitive system key is designed where three pairwise relatively prime subkeys are automatically generated for utilization in the CRT. The resulting secret shares pass statistical evaluation criteria such as RMSE, correlation, and entropy, and give good results for differential attack measures, and runtime. In addition, the proposed system succeeds in passing the NIST SP-800-22 statistical test suite and key sensitivity measures. © 2022 IEEE.
Pixel-based Visual Secret Sharing Using Lorenz System
(n, n)-Visual Secret Sharing (VSS) allows a user to send an image in the form of shares to different participants. Every share can not reveal the secret alone, and only all shares together can reveal the secret with fast recovery. This paper proposes a pixel-based (n, n)-VSS system, where to share a pixel from the secret image, (n – 1) random pixels are generated from the Lorenz chaotic system for a varying set of (n – 1) shares. Then, the nth pixel is calculated for a random share using the secret pixel and the generated (n – 1) random pixels. The system is efficient, lossless, implemented for grayscale and color images, and has a simple XOR-based recovery scheme. It passed several security analysis tests and is robust against noise attacks. Moreover, performance analysis and comparisons with other VSS systems are presented, showing good results. © 2023 ACM.
Double Visual Cryptography Using Generalized Tent Map, Rotation, and Image Filtering
This paper introduces a Multi-Visual Cryptography (MVC) system for sharing two color images, where the secrets can be revealed with low computation power using all the shares. The system uses the generalized Tent map as a source of randomness to generate any number of random shares. More specifically, (n-1) random shares are generated, and then, the nth share is calculated from the random shares and the secrets using rotations of the shares. In recovery, rotation of the last share recovers the two images based on the angle of rotation. Half the number of pixels is recovered for each secret image, whereas a modified weighted average filter is used to improve the quality of the recovered images significantly. The system does not use halftone images and produces shares of the same size as the secrets without pixel expansion or auxiliary data. The proposed system is efficient, passed several security tests, and is compared to recent works. © 2023 IEEE.
A (k,n)-Secret Image Sharing With Steganography Using Generalized Tent Map
Secret Image Sharing (SIS) transfers an image to mutually suspicious receivers as n meaningless shares, where k or more shares must be present to recover the secret. This paper proposes a (k, n)-SIS system for any image type using polynomial interpolation based on Lagrange polynomials, where the generated shares are of size 1/k of the secret image size. A full encryption system, consisting of substitution and permutation stages, is employed by using the generalized Tent map as a source of randomness. In addition to using a long and sensitive system key, steganography using the Least Significant Bits (LSBs) embedding technique is utilized to improve security. Detailed experimental analysis of the security, robustness and performance of the proposed system is provided, which is more comprehensive than the analyses given in other related works. Security is demonstrated using statistical tests, and robustness against noise and crop attacks is validated. © 2024 IEEE.
A Secured Lossless Visual Secret Sharing for Color Images Using Arnold Transform
Nowadays, with the rapid growth in information, a fast and secure method is eagerly needed to share images. (n, n)-Visual Secret Sharing (VSS) is used to share a secret image into n shares, where the secret can only be recovered using all the n shares and the recovery must be fast with low computational complexity. This paper proposes a secured lossless (n, n)-VSS system based on Arnold transform and pixel vectorization suitable to be used with binary, grayscale and color images. Multiple security tests were performed such as entropy, correlation, Mean Squared Error (MSE), National Institute of Standards and Technology (NIST) SP-800-22 statistical suite, and differential attacks, which demonstrate the good security of the proposed system. In addition, the time complexity and runtime of the recovery system indicate good efficiency. © 2022 IEEE.
Artificial Neural Network Chaotic PRNG and simple encryption on FPGA
Artificial Neural Networks (ANNs) are remarkably able to fit complex functions, making them useful in various applications and systems. This paper uses ANN to fit the Pehlivan–Uyaroglu Chaotic System (PUCS) to produce an Artificial Neural Network Chaotic Pseudo-Random Number Generator (ANNC-PRNG). The proposed PRNG imitates the PUCS chaotic system’s properties and attractor shape. The proposed ANNC-PRNG is implemented in a simple image encryption system on the Xilinx Kintex-7 Genesys 2 Field Programmable Gate Array (FPGA) board. Hardware realization of an ANN trained on chaotic time series has not been presented before. The proposed ANN can be used for different numerical methods or chaotic systems, including fractional-order systems while keeping the same resources despite the methodsÂ’ complexity or chaotic systemsÂ’ complexity. Extensive testing for the ANNC-PRNG was done to prove the randomness of the produced outputs. The proposed ANNC-PRNG and the encryption system passed various well-established security and statistical tests and produced good results compared to recent similar research. The encryption system is robust against different attacks. The proposed hardware architecture is fast as it reaches a maximum frequency of 12.553 MHz throughput of 301 Mbit/s. © 2023 Elsevier Ltd
An Efficient Multi-Secret Image Sharing System Based on Chinese Remainder Theorem and Its FPGA Realization
Multi-Secret Image Sharing (MSIS) is important in information security when multiple images are shared in an unintelligible form to different participants, where the images can only be recovered using the shares from participants. This paper proposes a simple and efficient ( n,n )-MSIS system for colored images based on XOR and Chinese Remainder Theorem (CRT), where all the n share are required in the recovery. The system improves the security by adding dependency on the input images to be robust against differential attacks, and by using several delay units. It works with even and odd number of inputs, and has a long sensitive system key design for the CRT. Security analysis and a comparison with related literature are introduced with good results including statistical tests, differential attack measures, and key sensitivity tests as well as performance analysis tests such as time and space complexity. In addition, Field Programmable Gate Array (FPGA) realization of the proposed system is presented with throughput 530 Mbits/sec. Finally, the proposed MSIS system is validated through software and hardware with all statistical analyses and proper hardware resources with low power consumption, high throughput and high level of security. © 2013 IEEE.
Software and hardware realizations for different designs of chaos-based secret image sharing systems
Secret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis. © The Author(s) 2024.