Abstract
This work explicitly states the design flows of the fractional-order analog filters used by researchers throughout the literature. Two main flows are studied: the FPAA implementation and the circuit realization. Partial-fraction expansion representation is used to prepare the approximated fractional-order response for implementation on FPAA. The generalization of the second-order active RC analog filters based on opamp from the integer-order domain to the fractional-order domain is presented. The generalization is studied from both mathematical and circuit realization points of view. It is found that the great benefit of the fractional-order domain is that it adds more degrees of freedom to the filter design process. Simulation and experimental results match the expected theoretical analysis. © 2013 IEEE.
Authors
Hassanein A.M., Madian A.H., Radwan A.G.G., Said L.A.
Keywords
Document Type
Journal
Source
IEEE Access, Doi:10.1109/ACCESS.2023.3260093