Abstract
This paper proposes a current-controlled fractional-order memristor emulator based on one active building block. The emulator consists of a multiplication mode current conveyor (MMCC) block with three passive elements. Additionally, the series connection of fractional-order inductor (FOI) and fractional-order capacitor (FOC) with memristive elements in the i-v plane is demonstrated numerically for different cases. Changing the order of the FOC or FOI and its effect on the pinched hysteresis loop area are investigated, which improve the controllability of the double loop area, the location of the pinched point, and the operating frequency range. Numerical, PSPICE simulation results, and experimental verification are investigated for different cases to approve the theoretical findings. Moreover, a sensitivity analysis using Monte Carlo simulations for the tolerance of the discrete components of the memristor emulator is investigated. © 2020 IEEE.
Authors
Khalil N.A., Fouda M.E., Said L.A., Radwan A.G., Soliman A.M.
Document Type
Source
Proceedings of the International Conference on Microelectronics, ICM, Doi:10.1109/ICM50269.2020.9331507