Parameter identification of Li-ion battery models is important for efficiently charge and discharge the most widely used energy storage devices. In this work, we propose a simplified battery model with a parameter identification method for time-domain charging and discharging. Staircase PotentioElectrochemical Impedance Spectroscopy technique (SPEIS) is chosen to characterize the batteries during charging and discharging cycles at different voltage steps values. Marine Predator Algorithm (MPA) is used to identify the proposed model parameters on two commercial Li-ion coin-shaped batteries. The proposed model shows very good matching with the experiments with absolute current error less than 10 4. Hence, the proposed model can be used for real-time applications to predict the battery’s behavior under different operating conditions. © 2021 IEEE.
On Fractional-order Capacitive Wireless Power Transfer System
Wireless power transfer is becoming an increasingly viable solution for the electrical powering of various electronic gadgets. However, precise outputs are not guaranteed with integer systems, so fractional-order capacitors are vital. This paper studies a four-plate fractional capacitive power transfer system by varying six orders of capacitors between the plates along with the load resistance. A mathematical model based on a 4× 4 mutual fractional capacitance matrix is established for equidistantly placed four identical metal plates. Moreover, the chosen circuit topology is identified and analyzed based on the proposed model. © 2022 IEEE.
MPPT for a Partially Shaded PV System Using Accelerated Particle Swarms
MPPT is developed to get the most power out from photovoltaic (PV) modules in various conditions, including changing weather and partial shading (PS). The partial shade of a PV system is a significant issue. PV systems’ power characteristics are so complicated under PS that there are a variety of MPPs. Traditional MPPT methods may become stuck in Local MPPs(LMPPs) instead of Global MPPs (GMPP). The GMPP can be tracked fast and correctly using accelerated particle swarm optimization (APSO). By comparing the employed algorithm to the traditional ones, simulation results validate the optimization performance. © 2021 IEEE.
Comparison of Different Implementation Methods of Fractional-Order Derivative/Integral
Implementing a fractional-order operator requires many resources to acquire an accurate response compared to the theoretical response. In this paper, three implementation methods of digital fractional-order operators are exploited. The three implementation methods are based on FIR, IIR, and lattice wave digital filters. The three methods are implemented using different optimization algorithms to optimize the choice of the coefficients of the three filters. This optimization is done to approximate the frequency response of an ideal fractional operator. This comparison aims to determine each implementation method’s accuracy and resource usage level to decide which method is better for different systems. © 2021 IEEE.
Capacitive Power Transfer Modeling of Charging Inner-body Devices
Wireless power transfer (WPT) is highly desirable for applications with battery restrictions, such as biomedical applications. For example, in the case of implantable devices, power is transmitted through the human body, which has dielectric characteristics that must be considered during the design of the WPT system. This paper examines capacitive power transfer through the human body and formulates the complete WPT system, including the human body model. The power delivered to the implantable device is also analyzed. Finally, the system efficiency is discussed under different body and load scenarios to determine the optimal transmission frequency and load impedance. © 2023 IEEE.
Battery Modeling with Mittag-Leffler Function
In various areas of life, rechargeable lithium-ion batteries are the technology of choice. Equivalent circuit models are utilized extensively in characterizing and modeling energy storage systems. In real-time applications, several generic-based battery models are created to simulate the battery’s charging and discharging behavior more accurately. In this work, we present two generic battery models based on Mittag-Leffler function using a generic Standard battery model as a reference. These models are intended to fit the continuous discharging cycles of lithium-ion, Nickel-cadmium, and Nickel-metal hydride batteries, as well as one set from the NASA randomized battery usage dataset. We formulate the parameter identification as an optimization problem, solved with Marine Predator Algorithm. The optimized models show very good matching against the measured data. © 2024 IEEE.
Power tracking controller design for photo-voltaic systems based on particle swarm optimization technique
Solar energy turns into a promising supply of electricity, so structures of Photo-voltaic (PV) regularly use a maximum power point tracking (MPPT) way to deliver the highest probable power to the load continuously
Two-Port Network Analysis of Equal Fractional-order Wireless Power Transfer Circuit
Wireless power transfer (WPT) has been widely employed in many applications
A low start up voltage charge pump for thermoelectric energy scavenging
In this paper, an ultra-low-voltage charge pump is presented
A low start-up voltage charge pump for energy harvesting applications
Threshold voltage cancellation (Vt cancellation) scheme is applied to cancel the threshold drop associated with the diode-connected device and improve charge pump performance