A study on coexistence of different types of synchronization between different dimensional fractional chaotic systems

In this study, robust approaches are proposed to investigate the problem of the coexistence of various types of synchronization between different dimensional fractional chaotic systems. Based on stability theory of linear fractional order systems, the co-existence of full state hybrid function projective synchronization (FSHFPS), inverse generalized synchronization (IGS), inverse full state hybrid projective synchronization (IFSHPS) and generalized synchronization (GS) is demonstrated. Using integer-order Lyapunov stability theory and fractional Lyapunov method, the co-existence of FSHFPS, inverse full state hybrid function projective synchronization (IFSHFPS), IGS and GS is also proved. Finally, numerical results are reported, with the aim to illustrate the capabilities of the novel schemes proposed herein. © Springer International Publishing AG 2017. All rights reserved.

Chaotic properties of various types of hidden attractors in integer and fractional order domains

Nonlinear dynamical systems with chaotic attractors have many engineering applications such as dynamical models or pseudo-random number generators. Discovering systems with hidden attractors has recently received considerable attention because they can lead to unexpected responses to perturbations. In this chapter, several recent examples of hidden attractors, which are classified into several categories from two different viewpoints, are reviewed. From the viewpoint of the equilibrium type, they are classified into systems with no equilibria, with a line of equilibrium points, and with one stable equilibrium. The type of nonlinearity presents another method of categorization. System properties are explored versus the different parameters to identify the values corresponding to the presence of strange attractors. The behavior of the systems is explored for integer order and fractional order derivatives using the suitable numerical techniques. The studied properties include time series, phase portraits, and maximum Lyapunov exponent. © 2018 Elsevier Inc. All rights reserved.

Chaos and bifurcation in controllable jerk-based self-excited attractors

In the recent decades, utilization of chaotic systems has flourished in various engineering applications. Hence, there is an increasing demand on generalized, modified and novel chaotic systems. This chapter combines the general equation of jerk-based chaotic systems with simple scaled discrete chaotic maps. Two continuous chaotic systems based on jerk-equation and discrete maps with scaling parameters are presented. The first system employs the scaled tent map, while the other employs the scaled logistic map. The effects of different parameters on the type of the response of each system are investigated through numerical simulations of time series, phase portraits, bifurcations and Maximum Lyapunov Exponent (MLE) values against all system parameters. Numerical simulations show interesting behaviors and dependencies among these parameters. Analogy between the effects of the scaling parameters is presented for simple one-dimensional discrete chaotic systems and the continuous jerk-based chaotic systems with more complicated dynamics. The impacts of these scaling parameters appear on the effective ranges of other main system parameters and the ranges of the obtained solution. The dependence of equilibrium points on the sign of one of the scaling parameters results in coexisting attractors according to the signs of the parameter and the initial point. In addition, switching can be used to generate double-scroll attractors. Moreover, bifurcation and chaos are studied for fractional-order of the derivative. © 2018, Springer International Publishing AG.

Applications of continuous-time fractional order chaotic systems

The study of nonlinear systems and chaos is of great importance to science and engineering mainly because real systems are inherently nonlinear and linearization is only valid near the operating point. The interest in chaos was increased when Lorenz accidentally discovered the sensitivity to initial condition during his simulation work on weather prediction. When a nonlinear system is exhibiting deterministic chaos, it is very difficult to predict its response under external disturbances. This behavior is a double-edged weapon. From a control and synchronization point of view, this proposes a challenge. On the other hand, from a communications and encryption perspective, this provides a higher level of security. This chapter is a survey of the recent contributions in engineering applications of fractional order chaotic continuous-time systems. The applications include but not limited to: communication and encryption, FPGA implementations, synchronization and control, modeling of electric motors, and biomedical applications. © 2018 Elsevier Inc. All rights reserved.

FPGA implementation of integer/fractional chaotic systems

Chaotic systems have remarkable importance in capturing some complex features of the physical process. Recently, fractional calculus becomes a vigorous tool in characterizing the dynamics of complex systems. The fractional-order chaotic systems increase the chaotic behavior in new dimensions and add extra degrees of freedom, which increase system controllability. In this chapter, FPGA implementation of different integer and fractional-order chaotic systems is presented. The investigated integer-order systems include Chua double scroll chaotic system and the modified Chua N-scroll chaotic system. The investigated fractional-order systems include Chua, Yalcin et al., Ozuogos et al., and Tang et al., chaotic systems. These systems are implemented and simulated based on the Grunwald–Letnikov (GL) definition with different window sizes. The parameters effect, along with different GL window sizes is investigated where some interesting chaotic behaviors are obtained. The proposed FPGA implementation utilizes fewer resources and has high throughput. Experimental results are provided on a digital oscilloscope. © Springer Nature Switzerland AG 2020.

Generalized synchronization of different dimensional integer-order and fractional order chaotic systems

In this work different control schemes are proposed to study the problem of generalized synchronization (GS) between integer-order and fractionalorder chaotic systems with different dimensions. Based on Lyapunov stability theory of integer-order differential systems, fractional Lyapunov-based approach and nonlinear controllers, different criterions are derived to achieve generalized synchronization. The effectiveness of the proposed control schemes are verified by numerical examples and computer simulations. © Springer International Publishing AG 2017. All rights reserved.

Fractional-order oscillators

Fractional-order calculus is the branch of mathematics which deals with non-integerorder differentiation and integration. Fractional calculus has recently found its way to engineering applications; particularly electronic circuits with promising results showing the feasibility of fabricating fractional-order capacitors on silicon. Fractionalorder capacitors are lossy non-deal capacitors with an impedance given by Zc = (1/j?C)?, where C is the pseudo-capacitance and ? is its order (0 < ? ? 1). When these fractional-order capacitors are employed within an oscillator (sinusoidal or relaxation) circuit, this oscillator is called a fractional-order oscillator and is described by non-integer-order differential equations. Therefore, an oscillator of order 1.5 or 2.6 is possible to obtain. While the oscillation frequency in integer-order oscillators is related to their RC time constants, fractional-order oscillators have their oscillation frequencies also related to ?. This adds more design freedom and enables extremely high or extremely low oscillation frequencies even with large RC time constants. This chapter aims at reviewing the theory of designing fractional-order oscillators accompanied by several design examples. Experimental results are also shown. © The Institution of Engineering and Technology 2017. All rights reserved.

Nonlinear fractional order boundary-value problems with multiple solutions

It is well-known that discovering and then calculating all branches of solutions of fractional order nonlinear differential equations with boundary conditions can be difficult even by numerical methods. To overcome this difficulty, in this chapter two semianalytic methods are presented to predict and obtain multiple solutions of nonlinear boundary value problems. These methods are based on the homotopy analysis method (HAM) and Picard method namely, predictor HAM and controlled Picard method. The used techniques are capable of predicting and calculating all branches of the solutions simultaneously. Four problems are solved, three of them are practical problems which are generalized in fractional order domain to show the efficiency and importance of these methods. And the solutions are calculated by simple procedures without any need for special transformations or perturbation techniques. © 2018 Elsevier Inc. All rights reserved.

On the fractional order generalized discrete maps

Chaos theory describes the dynamical systems which exhibit unpredictable, yet deterministic, behavior. Chaotic systems have a remarkable importance in both modeling and information processing in many fields. Fractional calculus has also become a powerful tool in describing the dynamics of complex systems such as fractional order (FO) chaotic systems. The FO parameter adds extra degrees of freedom which increases the design flexibility and adds more control on the design. The extra parameters increase the chaotic range. This chapter provides a review of several generalized discrete time one-dimensional maps. The generalizations include a signed control parameter, scaling parameters, and shaping parameters. The properties of the generalized fractional logistic map are presented. The generalized fractional tent map is presented and its properties are studied and validated using numerical simulations. Various simulations are conducted including time series, bifurcation diagrams, and various chaotic properties against the system parameters and FO parameter. © 2018 Elsevier Inc. All rights reserved.

Control and synchronization of fractional-order chaotic systems

The chaotic dynamics of fractional-order systems and their applications in secure communication have gained the attention of many recent researches. Fractional-order systems provide extra degrees of freedom and control capability with integer-order differential equations as special cases. Synchronization is a necessary function in any communication system and is rather hard to be achieved for chaotic signals that are ideally aperiodic. This chapter provides a general scheme of control, switching and generalized synchronization of fractional-order chaotic systems. Several systems are used as examples for demonstrating the required mathematical analysis and simulation results validating it. The non-standard finite difference method, which is suitable for fractional-order chaotic systems, is used to solve each system and get the responses. Effect of the fractional-order parameter on the responses of the systems extended to fractional-order domain is considered. A control and switching synchronization technique is proposed that uses switching parameters to decide the role of each system as a master or slave. A generalized scheme for synchronizing a fractional-order chaotic system with another one or with a linear combination of two other fractional-order chaotic systems is presented. Static (timeindependent) and dynamic (time-dependent) synchronization, which could generate multiple scaled versions of the response, are discussed. © Springer International Publishing AG 2017. All rights reserved.