Hardware accelerators outperform CPUs in terms of performance by parallelizing the algorithm architecture and using the device’s programmable resources. FPGA is a type of hardware accelerator that excels not only in performance but also in energy efficiency. So, it provides a suitable platform for implementing complicated fractional-order systems. This paper proposes a novel phase-based optimization method to implement fractional operators using FIR and IIR filters. We also compare five fractional operator implementation methods on FPGA regarding resource utilization, execution time, power, and accuracy. These methods and the proposed one are evaluated in terms of power consumption, delay, and resources to assist the designer in determining the most suitable implementation method for the given application. The proposed method has a lower phase error of 14.7% in the case of derivative operation and a lower phase error of 18.83% in the case of integration compared to the literature. In addition, the proposed methods decreased the consumed power and area by more than three times compared to the fixed-window GL fractional operator. The proposed approach implements Heaviside’s inductor-terminated lossy line. In addition, it is employed as an edge detection kernel to demonstrate its effectiveness in image processing applications. © 2023 IEEE.
Optimization of Double fractional-order Image Enhancement System
Image enhancement is a vital process that serves as a tool for improving the quality of a lot of real-life applications. Fractional calculus can be utilized in enhancing images using fractional order kernels, adding more controllability to the system, due to the flexible choice of the fractional order parameter, which adds extra degrees of freedom. The proposed system merges two fractional order kernels which helps in image enhancement techniques, and the contribution of this work is based on the study of how to optimize this process. The optimization of the two fractional kernels was done using the neural network optimization algorithm (NNA) to utilize the best order for the two kernels. In this paper, three fractional kernels are studied to highlight the performance of image enhancement using fractional kernels against different metrics. Furthermore, three different combinations of two kernels are combined and studied to enhance the metrics score by utilizing two different fractional orders for each kernel. Various optimization algorithms are used to obtain the optimum fractional order for both single and combined kernels. Using the constrained NNA, the evaluation metrics of the image enhancement show a 33% increase in measure of enhancement metric (EME), 21% increase in contrast, and 4% increase in average gradient compared to the best-achieved metrics by the literature while keeping the similarity metric above 0.75. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Fractional order systems: An overview of mathematics, design, and applications for engineers
Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.
Fractional-order modeling of dynamic systems with applications in optimization, signal processing, and control
Fractional-order Modelling of Dynamic Systems with Applications in Optimization, Signal Processing and Control introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved. All rights reserved.
Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers: Volume 1 in Emerging Methodologies and Applications in Modelling
Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.
Fractional-Order Design: Devices, Circuits, and Systems: Volume 3 in Emerging Methodologies and Applications in Modelling
Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource. © 2022 Elsevier Inc. All rights reserved.
Fractional-Order Modeling of Dynamic Systems with Applications in Optimization, Signal Processing and Control: Volume 2 in Emerging Methodologies and Applications in Modelling
Fractional-order Modelling of Dynamic Systems with Applications in Optimization, Signal Processing and Control introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. © 2022 Elsevier Inc. All rights reserved.
Design and FPGA Verification of Custom-Shaped Chaotic Attractors Using Rotation, Offset Boosting and Amplitude Control
This paper proposes a method of generating custom-shaped attractors, which depends on a planarly rotating V-shape multi-scroll chaotic system with offset boosting and amplitude control, and its FPGA verification
Analysis and FPGA of semi-fractal shapes based on complex Gaussian map
This paper studies the fractal-like behavior exhibited by the complex form of Gaussian chaotic map and the capability of digital architectures to mimic that behavior
Implementation and analysis of tunable fractional-order band-pass filter of order 2?
This paper proposes a new design of a 2?-order fractional-order band-pass filter with tunability feature

