This paper is an extension of V-shape multi-scroll butterfly attractor in the fractional-order domain
Memcapacitor based charge pump
This paper proposes a charge pump based on a charge controlled memcapacitor
Chaos synchronisation of continuous systems via scalar signal
By analyzing the issue of chaos synchronization in the literature, it can be noticed the lack of a general approach, which would enable any type of synchronization to be achieved
Dead-beat synchronization control in discrete-time chaotic systems
Referring to chaos synchronization, it can be noticed the lack of a general approach enabling any type of synchronization to be achieved
Elmore delay in the fractional order domain
Interconnect design has recently become one of the important factors that affect the circuit delay and performance especially in the deep submicron technology
A study on coexistence of different types of synchronization between different dimensional fractional chaotic systems
In this study, robust approaches are proposed to investigate the problem of the coexistence of various types of synchronization between different dimensional fractional chaotic systems. Based on stability theory of linear fractional order systems, the co-existence of full state hybrid function projective synchronization (FSHFPS), inverse generalized synchronization (IGS), inverse full state hybrid projective synchronization (IFSHPS) and generalized synchronization (GS) is demonstrated. Using integer-order Lyapunov stability theory and fractional Lyapunov method, the co-existence of FSHFPS, inverse full state hybrid function projective synchronization (IFSHFPS), IGS and GS is also proved. Finally, numerical results are reported, with the aim to illustrate the capabilities of the novel schemes proposed herein. © Springer International Publishing AG 2017. All rights reserved.
Memristor and inverse memristor: Modeling, implementation and experiments
Pinched hysteresis is considered to be a signature of the existence of memristive behavior. However, this is not completely accurate. In this chapter, we are discussing a general equation taking into consideration all possible cases to model all known elements including memristor. Based on this equation, it is found that an opposite behavior to the memristor can exist in a nonlinear inductor or a nonlinear capacitor (both with quadratic nonlinearity) or a derivative-controlled nonlinear resistor/transconductor which we refer to as the inverse memristor. We discuss the behavior of this new element and introduce an emulation circuit to mimic its behavior. Connecting the conventional elements with the memristor and/or with inverse memeristor either in series or parallel affects the pinched hysteresis lobes where the pinch point moves from the origin and lobes’ area shrinks or widens. Different cases of connecting different elements are discussed clearly especially connecting the memristor and the inverse memristor together either in series or in parallel. New observations and conditions on the memristive behavior are introduced and discussed in detail with different illustrative examples based on numerical, and circuit simulations. © Springer International Publishing AG 2017.
Generalized synchronization of different dimensional integer-order and fractional order chaotic systems
In this work different control schemes are proposed to study the problem of generalized synchronization (GS) between integer-order and fractionalorder chaotic systems with different dimensions. Based on Lyapunov stability theory of integer-order differential systems, fractional Lyapunov-based approach and nonlinear controllers, different criterions are derived to achieve generalized synchronization. The effectiveness of the proposed control schemes are verified by numerical examples and computer simulations. © Springer International Publishing AG 2017. All rights reserved.
Control and synchronization of fractional-order chaotic systems
The chaotic dynamics of fractional-order systems and their applications in secure communication have gained the attention of many recent researches. Fractional-order systems provide extra degrees of freedom and control capability with integer-order differential equations as special cases. Synchronization is a necessary function in any communication system and is rather hard to be achieved for chaotic signals that are ideally aperiodic. This chapter provides a general scheme of control, switching and generalized synchronization of fractional-order chaotic systems. Several systems are used as examples for demonstrating the required mathematical analysis and simulation results validating it. The non-standard finite difference method, which is suitable for fractional-order chaotic systems, is used to solve each system and get the responses. Effect of the fractional-order parameter on the responses of the systems extended to fractional-order domain is considered. A control and switching synchronization technique is proposed that uses switching parameters to decide the role of each system as a master or slave. A generalized scheme for synchronizing a fractional-order chaotic system with another one or with a linear combination of two other fractional-order chaotic systems is presented. Static (timeindependent) and dynamic (time-dependent) synchronization, which could generate multiple scaled versions of the response, are discussed. © Springer International Publishing AG 2017. All rights reserved.
Generalized synchronization of different dimensional integer-order and fractional order chaotic systems
In this work different control schemes are proposed to study the problem of generalized synchronization (GS) between integer-order and fractional order chaotic systems with different dimensions. Based on Lyapunov stability theory of integer-order differential systems, fractional Lyapunov-based approach and nonlinear controllers, different criterions are derived to achieve generalized synchronization. The effectiveness of the proposed control schemes are verified by numerical examples and computer simulations. © Springer International Publishing AG 2017.