Static random-access memory (SRAM) is a cornerstone in modern microprocessors architecture, as it has high power consumption, large area, and high complexity. Also, the stability of the data in the SRAM against the noise and the performance under the radian exposure are main concern issues. To overcome these limitations in the quest for higher information density by memory element, the ternary logic system has been investigated, showing promising potential compared with the conventional binary base. Moreover, carbon nanotube field effect transistor (CNTFET) is a new alternative device with proper features like low power consumption and threshold voltage dependency on diameter. This paper proposes a new design for ternary SRAM using CNTFET and its evaluation by comparing it against two other designs in many aspects. Moreover, we investigated the static noise margin for the three designs to discuss their stability. Furthermore, we studied the reliability of the designs by evaluating the soft errors effect. © 2023 John Wiley & Sons Ltd.
Parameter Identification of Li-ion Batteries: A Comparative Study
Lithium-ion batteries are crucial building stones in many applications. Therefore, modeling their behavior has become necessary in numerous fields, including heavyweight ones such as electric vehicles and plug-in hybrid electric vehicles, as well as lightweight ones like sensors and actuators. Generic models are in great demand for modeling the current change over time in real-time applications. This paper proposes seven dynamic models to simulate the behavior of lithium-ion batteries discharging. This was achieved using NASA room temperature random walk discharging datasets. The efficacy of these models in fitting different time-domain responses was tested through parameter identification with the Marine Predator Algorithm (MPA). In addition, each model’s term’s impact was analyzed to understand its effect on the fitted curve. The proposed models show an average absolute normalized error as low as (Formula presented.). © 2023 by the authors.
Fractional-order Memristor Response Under DC and Periodic Signals
Recently, there is an essential demand to extend the fundamentals of the conventional circuit theory to include the new generalized elements, fractional-order elements, and mem-elements due to their unique properties. This paper presents the relationships between seven different elements based on the four physical quantities and the fractional-order derivatives. One of them is the Fractional-order memristor, where the memristor dynamic is expressed by fractional-order derivative. This element merge the memristive and fractional-order concepts together where the conventional modeling becomes a special case. Moreover, the mathematical modeling of the fractional-order memristor is introduced. In addition, the response of applying DC, sinusoidal, and nonsinusoidal periodic signals is discussed. Finally, different numerical simulations are presented. © 2014, Springer Science+Business Media New York.
Simple floating voltage-controlled memductor emulator for analog applications
The topic of memristive circuits is a novel topic in circuit theory that has become of great importance due to its unique behavior which is useful in different applications. But since there is a lack of memristor samples, a memristor emulator is used instead of a solid state memristor. In this paper, a new simple floating voltage-controlled memductor emulator is introduced which is implemented using commercial off the shelf (COTS) realization. The mathematical modeling of the proposed circuit is derived to match the theoretical model. The proposed circuit is tested experimentally using different excitation signals such as sinusoidal, square, and triangular waves showing an excellent matching with previously reported simulations.
Boundary Dynamics of Memcapacitor in Voltage-Excited Circuits and Relaxation Oscillators
This paper discusses the boundary dynamics of the charge-controlled memcapacitor for Joglekar’s window function that describes the nonlinearities of the memcapacitor’s boundaries. A closed form solution for the memcapacitance is introduced for general doping factor (Formula presented.)p. The derived formulas are used to predict the behavior of the memcapacitor under different voltage excitation sources showing a great matching with the circuit simulations. The effect of the doping factor (Formula presented.) on the time domain response of the memcapacitor has been studied as compared to the linear model using the proposed formulas. Moreover, the generalized fundamentals such as the saturation time of the memcapacitor are introduced, which play an important role in many control applications. Then the boundary dynamics under sinusoidal excitation are used as a basis to analyze any periodic signal by Fourier series, and the results have been verified using PSPICE simulations showing a great matching. As an application, two configuration of resistive-less memcapacitor-based relaxation oscillators are proposed and closed form expressions for oscillation frequency and conditions for oscillation are derived in presence of nonlinear model. The proposed oscillator is verified using PSPICE simulation showing a perfect matching. © 2015, Springer Science+Business Media New York.
Resistive-less memcapacitor-based relaxation oscillator
Recently, the realization of the conventional relaxation oscillators was introduced based on memristors. This paper validates the concept using two series memcapacitors in general which is applicable for a capacitor and memcapacitor as well. Furthermore, the necessary conditions for oscillation are introduced, and a generalized closed-form expression for the oscillation frequency is derived. Two special cases are introduced and verified using PSPICE simulations showing a perfect matching. Copyright © 2014 John Wiley & Sons, Ltd.
Optimal Charging and Discharging of Supercapacitors
In this paper, we discuss the optimal charging and discharging of supercapacitors to maximize the delivered energy by deploying the fractional and multivariate calculus of variations. We prove mathematically that the constant current is the optimal charging and discharging method under R s -CPE model of supercapacitors. The charging and round-trip efficiencies have been mathematically analyzed for constant current charging and discharging. © 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited.
Memcapacitor response under step and sinusoidal voltage excitations
Recently, mem-elements have become fundamental in the circuit theory through promising potential applications based on the built-in memory-properties of these elements. In this paper, the mathematical analysis of the memcapacitor model is derived and the effect of different voltage excitation signals is studied for the linear dopant model. General closed form expressions and analyses are presented to describe the memcapacitor behavior under DC step and sinusoidal voltage excitations. Furthermore, the step and sinusoidal responses are used to analyze the memcapacitor response under any periodic signal using Fourier series expansion where the effect of the DC component on the output response is investigated. In addition, the stored energy in the memcapacitor under step, sinusoidal and square wave excitations is discussed. Moreover, the analysis of series and parallel connection of N non-matched memcapacitors in general is introduced and special cases of matched memcapacitors are discussed. The derived equations are verified using SPICE simulations showing great matching. © 2014 Elsevier Ltd. All rights reserved.
Introduction
This chapter summarizes the basic linear circuit elements (resistor, capacitor, inductor, and fractional-order elements) with their basic fundamentals and characteristic graphs. Each element was defined by a relation between the state variables of the network: current I, voltage V, charge Q, and flux ?. It also investigates the basic fundamentals of the memristor, its historical background, and its advantages over the last few decades. Moreover, the organization of the book is also discussed. © 2015, Springer International Publishing Switzerland.
Charge controlled memristor-less memcapacitor emulator
Recently, many promising applications are oriented towards the new memristive elements. But since these elements are not commercially available yet, the memristive elements emulators are very important. Introduced is a new memcapacitor emulator without using any memristor. The circuit concept and mathematical modelling are discussed analytically and numerically to validate the operation of the proposed emulator. Moreover, the proposed emulator is assembled using commercial off-the-shelf components and verified using PSpice simulations. © 2012 The Institution of Engineering and Technology.