First-order filters generalized to the fractional domain

Traditional continuous-time filters are of integer order. However, using fractional calculus, filters may also be represented by the more general fractional-order differential equations in which case integer-order filters are only a tight subset of fractional-order filters. In this work, we show that low-pass, high-pass, band-pass, and all-pass filters can be realized with circuits incorporating a single fractance device. We derive expressions for the pole frequencies, the quality factor, the right-phase frequencies, and the half-power frequencies. Examples of fractional passive filters supported by numerical and PSpice simulations are given. © 2008 World Scientific Publishing Company.

On the generalization of second-order filters to the fractional-order domain

This work is aimed at generalizing the design of continuous-time second-order filters to the non-integer-order (fractional-order) domain. In particular, we consider here the case where a filter is constructed using two fractional-order capacitors both of the same order ?. A fractional-order capacitor is one whose impedance is Zc = 1/C(j?) ?, C is the capacitance and ? (0 < ? ? 1) is its order. We generalize the design equations for low-pass, high-pass, band-pass, all-pass and notch filters with stability constraints considered. Several practical active filter design examples are then illustrated supported with numerical and PSpice simulations. Further, we show for the first time experimental results using the fractional capacitive probe described in Ref. 1. © 2009 World Scientific Publishing Company.

Fractional-order RC and RL circuits

This paper is a step forward to generalize the fundamentals of the conventional RC and RL circuits in fractional-order sense. The effect of fractional orders is the key factor for extra freedom, more flexibility, and novelty. The conditions for RC and RL circuits to act as pure imaginary impedances are derived, which are unrealizable in the conventional case. In addition, the sensitivity analyses of the magnitude and phase response with respect to all parameters showing the locations of these critical values are discussed. A qualitative revision for the fractional RC and RL circuits in the frequency domain is provided. Numerical and PSpice simulations are included to validate this study. © Springer Science+Business Media, LLC 2012.

Fractional order filter with two fractional elements of dependant orders

This work is aimed at generalizing the design of continuous-time filters in the non-integer-order (fractional-order) domain. In particular, we consider here the case where a filter is constructed using two fractional-order elements of different orders ? and ?. The design equations for the filter are generalized taking into consideration stability constraints. Also, the relations for the critical frequency points like maximum and minimum frequency points, the half power frequency and the right phase frequency are derived. The design technique presented here is related to a fractional order filter with dependent orders ? and ? related by a ratio k. Frequency transformations from the fractional low-pass filter to both fractional high-pass and band-pass filters are discussed. Finally, case studies of KHN active filter design examples are illustrated and supported with numerical and ADS simulations. © 2012 Elsevier Ltd.

Fractional order oscillators based on operational transresistance amplifiers

In this paper, a general analysis of the fractional order operational transresistance amplifiers (OTRA) based oscillator is presented and validated through eight different circuits which represent two classifications according to the number of OTRAs. The general analytical formulas of the oscillation frequency, condition as well as the phase difference are illustrated for each case and summarized in tables. One of the advantages of the fractional-order circuit is the extra degrees of freedom added from the fractional-order parameters. Moreover different special cases {? = ? ? 1, ? ? ? = 1, ? ? ? = 1} are investigated where the conventional case ? = ? = 1 is included in all of them. Also, the effect of the fractional order parameter on the phase difference between the two oscillator outputs is presented which increases the design flexibility and controllability. The effect of the non-ideal characteristics associated with OTRA on the presented oscillator is also studied. A comparison between the fractional order oscillators with their integer order counterpart is also presented to verify the advantages of the added fractional order parameters. Numerical and spice simulations are given to validate the presented analysis. © 2015 Elsevier GmbH.

Fractional Order Sallen–Key and KHN Filters: Stability and Poles Allocation

This paper presents the analysis for allocating the system poles and hence controlling the system stability for KHN and Sallen–Key fractional order filters. The stability analysis and stability contours for two different fractional order transfer functions with two different fractional order elements are presented. The effect of the transfer function parameters on the singularities of the system is demonstrated where the number of poles becomes dependent on the transfer function parameters as well as the fractional orders. Numerical, circuit simulation, and experimental work are used in the design to test the proposed stability contours. © 2014, Springer Science+Business Media New York.

Introduction

This chapter summarizes the basic linear circuit elements (resistor, capacitor, inductor, and fractional-order elements) with their basic fundamentals and characteristic graphs. Each element was defined by a relation between the state variables of the network: current I, voltage V, charge Q, and flux ?. It also investigates the basic fundamentals of the memristor, its historical background, and its advantages over the last few decades. Moreover, the organization of the book is also discussed. © 2015, Springer International Publishing Switzerland.

Fractional Order Oscillator Design Based on Two-Port Network

In this paper, a general analysis of the generation for all possible fractional order oscillators based on two-port network is presented. Three different two-port network classifications are used with three external single impedances, where two are fractional order capacitors and a resistor. Three possible impedance combinations for each classification are investigated, which give nine possible oscillators. The characteristic equation, oscillation frequency and condition for each presented topology are derived in terms of the transmission matrix elements and the fractional order parameters ? and ?. Mapping between some cases is also illustrated based on similarity in the characteristic equation. The use of fractional order elements ? and ? adds extra degrees of freedom, which increases the design flexibility and frequency band, and provides extra constraints on the phase difference. Study of four different active elements, such as voltage-controlled current source, gyrator, op-amp-based network, and second-generation current-conveyor-based network, serve as a two-port network is presented. The general analytical formulas of the oscillation frequency and condition as well as the phase difference between the two oscillatory outputs are derived and summarized in tables for each designed oscillator network. A comparison between fractional order oscillators with their integer order counterparts is also illustrated where some designs cannot work in the integer case. Numerical Spice simulations and experimental results are given to validate the presented analysis. © 2015, Springer Science+Business Media New York.

Fractional-order mutual inductance: Analysis and design

This paper introduces for the first time the generalized concept of the mutual inductance in the fractional-order domain where the symmetrical and unsymmetrical behaviors of the fractional-order mutual inductance are studied. To use the fractional mutual inductance in circuit design and simulation, an equivalent circuit is presented with its different conditions of operation. Also, simulations for the impedance matrix parameters of the fractional mutual inductance equivalent circuit using Advanced Design System and MATLAB are illustrated. The Advanced Design System and MATLAB simulations of the double-tuned filter based on the fractional mutual inductance are discussed. A great matching between the numerical analysis and the circuit simulation appears, which confirms the reliability of the concept of the fractional mutual inductance. Also, the analysis of the impedance matching using the fractional-order mutual inductance is introduced. © 2015 John Wiley & Sons, Ltd.

Controlled Picard Method for Solving Nonlinear Fractional Reaction–Diffusion Models in Porous Catalysts

This paper discusses the diffusion and reaction behaviors of catalyst pellets in the fractional-order domain as well as the case of nth-order reactions. Two generic models are studied to calculate the concentration of reactant in a porous catalyst in the case of a spherical geometric pellet and a flat-plate particle with different examples. A controlled Picard analytical method is introduced to obtain an approximated solution for these systems in both linear and nonlinear cases. This method can cover a wider range of problems due to the extra auxiliary parameter, which enhances the convergence and is suitable for higher-order differential equations. Moreover, the exact solution in the linear fractional-order system is obtained using the Mittag–Leffler function where the conventional solution is a special case. For nonlinear models, the proposed method gives matched responses with the homotopy analysis method (HAM) solutions for different fractional orders. The effect of fractional-order parameter on the dimensionless concentration of the reactant in a porous catalyst is analyzed graphically for different cases of order reactions and Thiele moduli. Moreover, the proposed method has been applied numerically for different cases to predict and calculate the dual solutions of a nonlinear fractional model when the reaction order n = ?1. © 2017, Copyright © Taylor & Francis Group, LLC.