This chapter summarizes the basic linear circuit elements (resistor, capacitor, inductor, and fractional-order elements) with their basic fundamentals and characteristic graphs. Each element was defined by a relation between the state variables of the network: current I, voltage V, charge Q, and flux ?. It also investigates the basic fundamentals of the memristor, its historical background, and its advantages over the last few decades. Moreover, the organization of the book is also discussed. © 2015, Springer International Publishing Switzerland.
Fractional Order Oscillator Design Based on Two-Port Network
In this paper, a general analysis of the generation for all possible fractional order oscillators based on two-port network is presented. Three different two-port network classifications are used with three external single impedances, where two are fractional order capacitors and a resistor. Three possible impedance combinations for each classification are investigated, which give nine possible oscillators. The characteristic equation, oscillation frequency and condition for each presented topology are derived in terms of the transmission matrix elements and the fractional order parameters ? and ?. Mapping between some cases is also illustrated based on similarity in the characteristic equation. The use of fractional order elements ? and ? adds extra degrees of freedom, which increases the design flexibility and frequency band, and provides extra constraints on the phase difference. Study of four different active elements, such as voltage-controlled current source, gyrator, op-amp-based network, and second-generation current-conveyor-based network, serve as a two-port network is presented. The general analytical formulas of the oscillation frequency and condition as well as the phase difference between the two oscillatory outputs are derived and summarized in tables for each designed oscillator network. A comparison between fractional order oscillators with their integer order counterparts is also illustrated where some designs cannot work in the integer case. Numerical Spice simulations and experimental results are given to validate the presented analysis. © 2015, Springer Science+Business Media New York.
Fractional-order mutual inductance: Analysis and design
This paper introduces for the first time the generalized concept of the mutual inductance in the fractional-order domain where the symmetrical and unsymmetrical behaviors of the fractional-order mutual inductance are studied. To use the fractional mutual inductance in circuit design and simulation, an equivalent circuit is presented with its different conditions of operation. Also, simulations for the impedance matrix parameters of the fractional mutual inductance equivalent circuit using Advanced Design System and MATLAB are illustrated. The Advanced Design System and MATLAB simulations of the double-tuned filter based on the fractional mutual inductance are discussed. A great matching between the numerical analysis and the circuit simulation appears, which confirms the reliability of the concept of the fractional mutual inductance. Also, the analysis of the impedance matching using the fractional-order mutual inductance is introduced. © 2015 John Wiley & Sons, Ltd.
Controlled Picard Method for Solving Nonlinear Fractional Reaction–Diffusion Models in Porous Catalysts
This paper discusses the diffusion and reaction behaviors of catalyst pellets in the fractional-order domain as well as the case of nth-order reactions. Two generic models are studied to calculate the concentration of reactant in a porous catalyst in the case of a spherical geometric pellet and a flat-plate particle with different examples. A controlled Picard analytical method is introduced to obtain an approximated solution for these systems in both linear and nonlinear cases. This method can cover a wider range of problems due to the extra auxiliary parameter, which enhances the convergence and is suitable for higher-order differential equations. Moreover, the exact solution in the linear fractional-order system is obtained using the Mittag–Leffler function where the conventional solution is a special case. For nonlinear models, the proposed method gives matched responses with the homotopy analysis method (HAM) solutions for different fractional orders. The effect of fractional-order parameter on the dimensionless concentration of the reactant in a porous catalyst is analyzed graphically for different cases of order reactions and Thiele moduli. Moreover, the proposed method has been applied numerically for different cases to predict and calculate the dual solutions of a nonlinear fractional model when the reaction order n = ?1. © 2017, Copyright © Taylor & Francis Group, LLC.
Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency
This paper presents a generalization of six well-known quadrature third-order oscillators into the fractional-order domain. The generalization process involves replacement of three integer-order capacitors with fractional-order ones. The employment of fractional-order capacitors allows a complete tunability of oscillator frequency and phase. The presented oscillators are implemented with three active building blocks which are op-Amp, current feedback operational amplifier (CFOA) and second generation current conveyor (CCII). The general state matrix, oscillation frequency and condition are deduced in terms of the fractional-order parameters. The extra degree of freedom provided by the fractional-order elements increases the design flexibility. Eight special cases including the integer case are illustrated with their numerical discussions. Three different phases are produced with fixed sum of 2p which can be completely controlled by fractional-order elements. A general design procedure is introduced to design an oscillator with a specific phase and frequency. Two general design cases are discussed based on exploiting the degrees of freedom introduced by the fractional order to obtain the required design. Spice circuit simulations with experimental results for some special cases are presented to validate the theoretical findings. © 2017 World Scientific Publishing Company.
Single and dual solutions of fractional order differential equations based on controlled Picard’s method with Simpson rule
This paper presents a semi-analytical method for solving fractional differential equations with strong terms like (exp, sin, cos,Â…). An auxiliary parameter is introduced into the well-known Picard’s method and so called controlled Picard’s method. The proposed approach is based on a combination of controlled Picard’s method with Simpson rule. This approach can cover a wider range of integer and fractional orders differential equations due to the extra auxiliary parameter which enhances the convergence and is suitable for higher order differential equations. The proposed approach can be effectively applied to Bratu’s problem in fractional order domain to predict and calculate all branches of problem solutions simultaneously. Also, it is tested on other fractional differential equations like nonlinear fractional order Sine-Gordon equation. The results demonstrate reliability, simplicity and efficiency of the approach developed. © 2017 University of Bahrain
Modified methods for solving two classes of distributed order linear fractional differential equations
This paper introduces two methods for the numerical solution of distributed order linear fractional differential equations. The first method focuses on initial value problems (IVPs) and based on the ?th Caputo fractional definition with the shifted Chebyshev operational matrix of fractional integration. By applying this method, the IVPs are converted into simple linear differential equations which can be easily handled. The other method focuses on boundary value problems (BVPs) based on Picard’s method frame. This method is based on iterative formula contains an auxiliary parameter which provides a simple way to control the convergence region of solution series. Several numerical examples are used to illustrate the accuracy of the proposed methods compared to the existing methods. Also, the response of mechanical system described by such equations is studied. © 2017 Elsevier Inc.
First-order filters generalized to the fractional domain
Traditional continuous-time filters are of integer order. However, using fractional calculus, filters may also be represented by the more general fractional-order differential equations in which case integer-order filters are only a tight subset of fractional-order filters. In this work, we show that low-pass, high-pass, band-pass, and all-pass filters can be realized with circuits incorporating a single fractance device. We derive expressions for the pole frequencies, the quality factor, the right-phase frequencies, and the half-power frequencies. Examples of fractional passive filters supported by numerical and PSpice simulations are given. © 2008 World Scientific Publishing Company.
On the generalization of second-order filters to the fractional-order domain
This work is aimed at generalizing the design of continuous-time second-order filters to the non-integer-order (fractional-order) domain. In particular, we consider here the case where a filter is constructed using two fractional-order capacitors both of the same order ?. A fractional-order capacitor is one whose impedance is Zc = 1/C(j?) ?, C is the capacitance and ? (0 < ? ? 1) is its order. We generalize the design equations for low-pass, high-pass, band-pass, all-pass and notch filters with stability constraints considered. Several practical active filter design examples are then illustrated supported with numerical and PSpice simulations. Further, we show for the first time experimental results using the fractional capacitive probe described in Ref. 1. © 2009 World Scientific Publishing Company.
Fractional-order RC and RL circuits
This paper is a step forward to generalize the fundamentals of the conventional RC and RL circuits in fractional-order sense. The effect of fractional orders is the key factor for extra freedom, more flexibility, and novelty. The conditions for RC and RL circuits to act as pure imaginary impedances are derived, which are unrealizable in the conventional case. In addition, the sensitivity analyses of the magnitude and phase response with respect to all parameters showing the locations of these critical values are discussed. A qualitative revision for the fractional RC and RL circuits in the frequency domain is provided. Numerical and PSpice simulations are included to validate this study. © Springer Science+Business Media, LLC 2012.

