This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews’ kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt. © IWA Publishing 2016.
Hardware realization of a secure and enhanced s-box based speech encryption engine
This paper presents a secure and efficient substitution box (s-box) for speech encryption applications. The proposed s-box data changes every clock cycle to swap the input signal with different data, where it generated based on a new algorithm and a memristor chaotic system. Bifurcation diagrams for all memristor chaotic system parameters are introduced to stand for the chaotic range of each parameter. Moreover, the effect of each component inside the proposed encryption system is studied, and the security of the system is validated through perceptual and statistical tests. The size of the encryption key is 175 bits to meet the global standards for the optimum encryption key width (> 128). MATLAB software is used to calculate entropy, MSE, and correlation coefficient. Both chaotic circuit and encryption/decryption schemes are designed using Verilog HDL and simulated by Xilinx ISE 14.7. Xilinx Virtex 5 FPGA kit is used to realize the proposed algorithm with a throughput 0.536 of Gbit/s. The cryptosystem is tested using two different speech files to examine its efficiency. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Generalized model for Memristor-based Wien family oscillators
In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.
Soft robotic grippers: A review on technologies, materials, and applications
The growing need for manipulators capable of handling delicate objects with care and coexisting safely with humans has brought soft robots to the forefront as a practical and cost-effective solution. In this context, this paper aims to explore soft grippers, a unique and versatile subset of soft robots. It provides an overview of various soft grasping techniques and materials, highlighting their respective advantages and limitations, along with showcasing several designed and tested models. As medicine and agriculture are acknowledged as pivotal domains required for basic human survival, this paper explores the potential applications of soft robotic grippers in these respective fields. Additionally, it further investigates how soft grippers can contribute to reducing cost and enhancing production efficiency while addressing practical relevant solutions. Considering the escalating environmental threats, particularly in oceans and coral reefs, the paper examines the potential of soft grasping underwater to mitigate these challenges, considered as crucial for conserving the fisheries industry and pertinent economic fields. Lastly, it outlines the current challenges and future prospects of soft grippers, emphasizing the importance of overcoming obstacles through finding solutions such as using bioinspiration to create effective technical solutions and highlighting the importance of commercialization. © 2024 Elsevier B.V.
Charge controlled memristor-less memcapacitor emulator
Recently, many promising applications are oriented towards the new memristive elements. But since these elements are not commercially available yet, the memristive elements emulators are very important. Introduced is a new memcapacitor emulator without using any memristor. The circuit concept and mathematical modelling are discussed analytically and numerically to validate the operation of the proposed emulator. Moreover, the proposed emulator is assembled using commercial off-the-shelf components and verified using PSpice simulations. © 2012 The Institution of Engineering and Technology.
A Study on Fractional Power-Law Applications and Approximations
The frequency response of the fractional-order power-law filter can be approximated by different techniques, which eventually affect the expected performance. Fractional-order control systems introduce many benefits for applications like compensators to achieve robust frequency and additional degrees of freedom in the tuning process. This paper is a comparative study of five of these approximation techniques. The comparison focuses on their magnitude error, phase error, and implementation complexity. The techniques under study are the Carlson, continued fraction expansion (CFE), Padé, Charef, and MATLAB curve-fitting tool approximations. Based on this comparison, the recommended approximation techniques are the curve-fitting MATLAB tool and the continued fraction expansion (CFE). As an application, a low-pass power-law filter is realized on a field-programmable analog array (FPAA) using two techniques, namely the curve-fitting tool and the CFE. The experiment aligns with and validates the numerical results. © 2024 by the authors.
Non linear dynamics of memristor based 3rd order oscillatory system
In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.
DISH: Digital image steganography using stochastic-computing with high-capacity
Stochastic computing is a relatively new approach to computing that has gained interest in recent years due to its potential for low-power and high-noise environments. It is a method of computing that uses probability to represent and manipulate data, therefore it has applications in areas such as signal processing, machine learning, and cryptography. Stochastic steganography involves hiding a message within a cover image using a statistical model. Unlike traditional steganography techniques that use deterministic algorithms to embed the message, stochastic steganography uses a probabilistic approach to hide the message in a way that makes it difficult for an adversary to detect. Due to this error robustness and large bit streams stochastic computing, they are well suited for high capacity and secure image steganography. In this paper, as per the authors’ best knowledge, image steganography using stochastic computing based on linear feedback shift register (LFSR) is proposed for the first time. In the proposed technique, the cover image is converted to stochastic representation instead of the binary one, and then a secret image is embedded in it. The resulting stego image has a high PSNR value transmitted with no visual trace of the hidden image. The final results are stego image with PSNR starting from 30 dB and a maximum payload up to 40 bits per pixel (bpp) with an effective payload up to 28 bpp. The proposed method achieves high security and high capability of the number of stored bits in each pixel. Thus, the proposed method can prove a vital solution for high capacity and secure image steganography, which can then be extended to other types of steganography. © 2024, The Author(s).
Meminductor response under periodic current excitations
Recently, the mem-elements-based circuits have been addressed frequently in the nonlinear circuit theory due to their unique behavior. Thus, the modeling and characterizing of the mem-elements has become essential, especially studying their response under any excitation signal. This paper investigates the response of the meminductor under DC, sinusoidal, and periodic current signals for the first time. Furthermore, a meminductor emulator is developed to fit the obtained formulas which are built using commercial off the shelf components. The proposed analysis offers closed form expressions for the meminductance for each case. Moreover, many fundamentals and properties are derived to understand the responses such as the maximum saturation time in case of the DC response. A general closed form expression for the meminductance is derived under any periodic waveform, and this formula has been validated by applying a square wave as an example. © 2013 Springer Science+Business Media New York.
Chaotic Dynamics and FPGA Implementation of a Fractional-Order Chaotic System with Time Delay
This article proposes a numerical solution approach and Field Programmable Gate Array implementation of a delayed fractional-order system. The proposed method is amenable to a sufficiently efficient hardware realization. The system’s numerical solution and hardware realization have two requirements. First, the delay terms are implemented by employing LookUp Tables to keep the already required delayed samples in the dynamical equations. Second, the fractional derivative is numerically approximated using Grünwald-Letnikov approximation with a memory window size, L, according to the short memory principle such that it balances between accuracy and efficiency. Bifurcation diagrams and spectral entropy validate the chaotic behaviour of the system for commensurate and incommensurate orders. Additionally, the dynamic behaviour of the system is studied versus the delay parameter, ?, and the window size, L. The system is realized on Nexys 4 Artix-7 FPGA XC7A100T with throughput 1.2 Gbit/s and hardware resources utilization 15% from the total LookUp Tables and 4% from the slice registers. Oscilloscope experimental results verify the numerical solution of the delayed fractional-order system. The amenability to digital hardware realization, which is experimentally validated in this article, is added to the system’s advantages and encourages its utilization in future digital applications such as chaos control and synchronization and chaos-based communication applications. © 2020 IEEE.

