The textile industry is considered a source of pollution because of the discharge of dye wastewater. The dye wastewater effluent has a significant impact on the aquatic environment. According to the World Bank, textile dyeing, and treatment contribute 17 to 20% of the pollution of water. This paper aims to prepare the bimetallic nano zero-valent iron-copper (Fe0-Cu), algae-activated carbon, and their composites (AC-Fe0-Cu), which are employed as adsorbents. In this paper, Synthetic adsorbents are prepared and examined for the adsorption and removal of soluble cationic crystal violet (CV) dye. The influence of synthetic adsorbents on the adsorption and removal of soluble cationic crystal violet (CV) dye is investigated using UV-V spectroscopy at different pH (3-10), time intervals (15-180) min, and initial dye concentrations (50-500 ppm). Raw algae exhibit an impressive 96.64% removal efficiency under the following conditions: pH 7, contact time of 180 min, rotational speed of 120 rpm, temperature range of 25 °C-30 °C, concentration of 300 ppm in the CV dye solution, and a dose of 4 g l?1 of raw algae adsorbent. The best removal efficiencies of Raw algae Fe0-Cu, and H3PO4 chemical AC-Fe0-Cu are 97.61 % and 97.46 %, respectively, at pH = 7, contact time = 150 min, rotational speed = 120 rpm, T = (25-30) °C, concentration = 75 ppm of CV dye solution, and 1.5 g l?1 doses of raw algae F e0-Cu adsorbent and 1 g l?1 dose of H3PO4 chemical AC-Fe0-Cu adsorbent. The maximum amounts (q max) of Bi-RA and RA adsorbed for the adsorption process of CV are 85.92 mg g?1 and 1388 mg g?1, respectively. The Bi-H3A-AC model, optimized using PSO, demonstrates superior performance, with the highest adsorption capacity estimated at 83.51 mg g?1. However, the Langmuir model predicts a maximum adsorption capacity (q e ) of 275.6 mg g?1 for the CV adsorption process when utilizing Bi-H3A-AC. Kinetic and isothermal models are used to fit the data of time and concentration experiments. DLS, zeta potential, FT-IR, XRD, and SEM are used to characterize the prepared materials. Response surface methodology (RSM) is used to model the removal efficiency and then turned into a numerical optimization approach to determine the ideal conditions for improving removal efficiency. An artificial neural network (ANN) is also used to model the removal efficiency. © 2024 The Author(s). Published by IOP Publishing Ltd.
A novel chaotic system without equilibrium: Dynamics, synchronization, and circuit realization
A few special chaotic systems without unstable equilibrium points have been investigated recently
Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge
Microwave (MW) sludge pretreatment enhances anaerobic digestion in terms of organics solubilization, sludge de-waterability and biogas production
Modelling and implementation of soft bio-mimetic turtle using echo state network and soft pneumatic actuators
Advances of soft robotics enabled better mimicking of biological creatures and closer realization of animalsÂ’ motion in the robotics field
Design and FPGA Verification of Custom-Shaped Chaotic Attractors Using Rotation, Offset Boosting and Amplitude Control
This paper proposes a method of generating custom-shaped attractors, which depends on a planarly rotating V-shape multi-scroll chaotic system with offset boosting and amplitude control, and its FPGA verification
Editorial note Special Issue on the Design and implementation of fractional-order circuits and systems in real-world applications
The aim of this Special Issue is to present the latest developments, trends, research solutions, and applications of fractional-order circuits and systems with emphasis on real-world applications.
Trajectory control and image encryption using affine transformation of lorenz system
This paper presents a generalization of chaotic systems using two-dimensional affine transformations with six introduced parameters to achieve scaling, reflection, rotation, translation and/or shearing
Memristor based N-bits redundant binary adder
This paper introduces a memristor based N-bits redundant binary adder architecture for canonic signed digit code CSDC as a step towards memristor based multilevel ALU
Fractional-order and memristive nonlinear systems: Advances and applications
Chaotic systems are nonlinear dynamical systems which are sensitive to initial conditions, topologically mixing, and with dense periodic orbits

