Impedance spectroscopy has became an essential non-invasive tool for quality assessment measurements of the biochemical and biophysical changes in plant tissues. The electrical behaviour of biological tissues can be captured by fitting its bio-impedance data to a suitable circuit model. This paper investigates the use of power-law filters in circuit modelling of bio-impedance. The proposed models are fitted to experimental data obtained from eight different fruit types using a meta-heuristic optimization method (the Water Cycle Algorithm (WCA)). Impedance measurements are obtained using a Biologic SP150 electrochemical station, and the percentage error between the actual impedance and the fitted models’ impedance are reported. It is found that a circuit model consisting of a combination of two second-order power-law low-pass filters shows the least fitting error. © 2022 by the authors.
Smart Irrigation Systems: Overview
Countries are collaborating to make agriculture more efficient by combining new technologies to improve its procedure. Improving irrigation efficiency in agriculture is thus critical for the survival of sustainable agricultural production. Smart irrigation methods can enhance irrigation efficiency, specially with the introduction of wireless communication systems, monitoring devices, and enhanced control techniques for efficient irrigation scheduling. The study compared on a wide range of study subjects to investigate scientific approaches for smart irrigation. As a result, this project included a wide range of topics related to irrigation methods, decision-making, and technology used. Information was gathered from a variety of scientific papers. So, our research relied on several published documents, the majority of which were published during the last four years, and authors from all over the world. In the meantime, various irrigation initiatives were given special attention. Following that, the evaluation focuses on the key components of smart irrigation, such as real-time irrigation scheduling, IoT, the importance of an internet connection, smart sensing, and energy harvesting. Author
Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms
Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared with three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, and Fractional-order Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem. Experiments are conducted on two samples of three different medical plant species from the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the range of 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to verify the efficiency of the proposed models in modeling the plant stem tissue. The proposed models give the best results in all inter-electrode spacing distances. Four different metaheuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems. © 2022, The Author(s).
FPGA REALIZATION OF COMPLEX LOGISTIC MAP FRACTAL BEHAVIOR
This paper studies the capability of digital architecture to mimic fractal behavior. As chaotic attractors realized digitally had opened many tracks, digital designs mimicking fractals may ultimately achieve the same. This study is based on a complex single-dimensional discrete chaotic system known as the generalized positive logistic map. The fractals realized from this system are linked to the results of the mathematical analysis to understand the fractal behavior with different variations. A digital hardware architecture manifesting the fractal behavior is achieved on FPGA, showing a fractal entity experimentally. With this digital realization, it is hoped that fractals can follow the example of chaotic attractors digital applications. © 2022 World Scientific Publishing Company.
Correction to: Stability analysis of fractional-order Colpitts oscillators (Analog Integrated Circuits and Signal Processing, (2019), 101, 2, (267-279), 10.1007/s10470-019-01501-2)
Unfortunately, in the original version of the article some typos occurred. The typos have been corrected with this erratum. Below are the corrections:(Formula presented.). © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
A study of the nonlinear dynamics of human behavior and its digital hardware implementation
This paper introduces an intensive discussion for the dynamical model of the love triangle in both integer and fractional-order domains. Three different types of nonlinearities soft, hard, and mixed between soft and hard, are used in this study. MATLAB numerical simulations for the different three categories are presented. Also, a discussion for how the kind of personalities affects the behavior of chaotic attractors is introduced. This paper suggests some explanations for the complex love relationships depending on the impact of memory (IoM) principle. Lyapunov exponents, Kaplan-Yorke dimension, and bifurcation diagrams for three different integer-order cases show a significant dependency on system parameters. Hardware digital realization of the system is done using the Xilinx Artix-7 XC7A100T FPGA kit. Version 14.7 from the Xilinx ISE platform is used in both Verilog simulation and hardware implementation stages. The digital approach of such a system opens the door to predict the love relation after sensing the human personality. Also, this study will help in justifying more human emotions like happiness, panic, and fear accurately. Perhaps shortly, this study may combine with artificial intelligence to demonstrate Human-Computer interaction products. © 2020
Fractional order oscillators based on operational transresistance amplifiers
In this paper, a general analysis of the fractional order operational transresistance amplifiers (OTRA) based oscillator is presented and validated through eight different circuits which represent two classifications according to the number of OTRAs. The general analytical formulas of the oscillation frequency, condition as well as the phase difference are illustrated for each case and summarized in tables. One of the advantages of the fractional-order circuit is the extra degrees of freedom added from the fractional-order parameters. Moreover different special cases {? = ? ? 1, ? ? ? = 1, ? ? ? = 1} are investigated where the conventional case ? = ? = 1 is included in all of them. Also, the effect of the fractional order parameter on the phase difference between the two oscillator outputs is presented which increases the design flexibility and controllability. The effect of the non-ideal characteristics associated with OTRA on the presented oscillator is also studied. A comparison between the fractional order oscillators with their integer order counterpart is also presented to verify the advantages of the added fractional order parameters. Numerical and spice simulations are given to validate the presented analysis. © 2015 Elsevier GmbH.
Fractional Order Oscillator Design Based on Two-Port Network
In this paper, a general analysis of the generation for all possible fractional order oscillators based on two-port network is presented. Three different two-port network classifications are used with three external single impedances, where two are fractional order capacitors and a resistor. Three possible impedance combinations for each classification are investigated, which give nine possible oscillators. The characteristic equation, oscillation frequency and condition for each presented topology are derived in terms of the transmission matrix elements and the fractional order parameters ? and ?. Mapping between some cases is also illustrated based on similarity in the characteristic equation. The use of fractional order elements ? and ? adds extra degrees of freedom, which increases the design flexibility and frequency band, and provides extra constraints on the phase difference. Study of four different active elements, such as voltage-controlled current source, gyrator, op-amp-based network, and second-generation current-conveyor-based network, serve as a two-port network is presented. The general analytical formulas of the oscillation frequency and condition as well as the phase difference between the two oscillatory outputs are derived and summarized in tables for each designed oscillator network. A comparison between fractional order oscillators with their integer order counterparts is also illustrated where some designs cannot work in the integer case. Numerical Spice simulations and experimental results are given to validate the presented analysis. © 2015, Springer Science+Business Media New York.
Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency
This paper presents a generalization of six well-known quadrature third-order oscillators into the fractional-order domain. The generalization process involves replacement of three integer-order capacitors with fractional-order ones. The employment of fractional-order capacitors allows a complete tunability of oscillator frequency and phase. The presented oscillators are implemented with three active building blocks which are op-Amp, current feedback operational amplifier (CFOA) and second generation current conveyor (CCII). The general state matrix, oscillation frequency and condition are deduced in terms of the fractional-order parameters. The extra degree of freedom provided by the fractional-order elements increases the design flexibility. Eight special cases including the integer case are illustrated with their numerical discussions. Three different phases are produced with fixed sum of 2p which can be completely controlled by fractional-order elements. A general design procedure is introduced to design an oscillator with a specific phase and frequency. Two general design cases are discussed based on exploiting the degrees of freedom introduced by the fractional order to obtain the required design. Spice circuit simulations with experimental results for some special cases are presented to validate the theoretical findings. © 2017 World Scientific Publishing Company.
A Study on Fractional Power-Law Applications and Approximations
The frequency response of the fractional-order power-law filter can be approximated by different techniques, which eventually affect the expected performance. Fractional-order control systems introduce many benefits for applications like compensators to achieve robust frequency and additional degrees of freedom in the tuning process. This paper is a comparative study of five of these approximation techniques. The comparison focuses on their magnitude error, phase error, and implementation complexity. The techniques under study are the Carlson, continued fraction expansion (CFE), Padé, Charef, and MATLAB curve-fitting tool approximations. Based on this comparison, the recommended approximation techniques are the curve-fitting MATLAB tool and the continued fraction expansion (CFE). As an application, a low-pass power-law filter is realized on a field-programmable analog array (FPAA) using two techniques, namely the curve-fitting tool and the CFE. The experiment aligns with and validates the numerical results. © 2024 by the authors.

