An Encryption Application and FPGA Realization of a Fractional Memristive Chaotic System

The work in this paper extends a memristive chaotic system with transcendental nonlinearities to the fractional-order domain. The extended system’s chaotic properties were validated through bifurcation analysis and spectral entropy. The presented system was employed in the substitution stage of an image encryption algorithm, including a generalized Arnold map for the permutation. The encryption scheme demonstrated its efficiency through statistical tests, key sensitivity analysis and resistance to brute force and differential attacks. The fractional-order memristive system includes a reconfigurable coordinate rotation digital computer (CORDIC) and Grünwald–Letnikov (GL) architectures, which are essential for trigonometric and hyperbolic functions and fractional-order operator implementations, respectively. The proposed system was implemented on the Artix-7 FPGA board, achieving a throughput of 0.396 Gbit/s. © 2023 by the authors.

Generalized synchronization of different dimensional integer-order and fractional order chaotic systems

In this work different control schemes are proposed to study the problem of generalized synchronization (GS) between integer-order and fractional order chaotic systems with different dimensions. Based on Lyapunov stability theory of integer-order differential systems, fractional Lyapunov-based approach and nonlinear controllers, different criterions are derived to achieve generalized synchronization. The effectiveness of the proposed control schemes are verified by numerical examples and computer simulations. © Springer International Publishing AG 2017.

A study of the nonlinear dynamics of human behavior and its digital hardware implementation

This paper introduces an intensive discussion for the dynamical model of the love triangle in both integer and fractional-order domains. Three different types of nonlinearities soft, hard, and mixed between soft and hard, are used in this study. MATLAB numerical simulations for the different three categories are presented. Also, a discussion for how the kind of personalities affects the behavior of chaotic attractors is introduced. This paper suggests some explanations for the complex love relationships depending on the impact of memory (IoM) principle. Lyapunov exponents, Kaplan-Yorke dimension, and bifurcation diagrams for three different integer-order cases show a significant dependency on system parameters. Hardware digital realization of the system is done using the Xilinx Artix-7 XC7A100T FPGA kit. Version 14.7 from the Xilinx ISE platform is used in both Verilog simulation and hardware implementation stages. The digital approach of such a system opens the door to predict the love relation after sensing the human personality. Also, this study will help in justifying more human emotions like happiness, panic, and fear accurately. Perhaps shortly, this study may combine with artificial intelligence to demonstrate Human-Computer interaction products. © 2020

A novel image encryption system merging fractional-order edge detection and generalized chaotic maps

This paper presents a novel lossless image encryption algorithm based on edge detection and generalized chaotic maps for key generation. Generalized chaotic maps, including the fractional-order, the delayed, and the Double-Humped logistic maps, are used to design the pseudo-random number key generator. The generalization parameters add extra degrees of freedom to the system and increase the keyspace achieving more secure keys. Fractional order edge detection filters exhibited better noise robustness than the conventional integer-order ones, rendering the system to be suitable for medical imaging security. The proposed system flexibly integrate different edge detectors, as well as various logistic maps for key generation. The sensitivity of the chaotic maps to all parameters guarantees the encryption system key sensitivity. Security analyses aspects assure the efficiency of the proposed algorithm performance, having high pixel correlation coefficients and flat histograms of cipher images reported. A comparison between the proposed scheme with existing cryptosystems is also presented, regarding histogram uniformity, contrast analysis, Shannon entropy measurements. Compared to the state of the art algorithms, the proposed algorithm has higher statistical and cryptanalytic properties. © 2019

FPGA realization of fractals based on a new generalized complex logistic map

This paper introduces a new generalized complex logistic map and the FPGA realization of a corresponding fractal generation application. The chaotic properties of the proposed map are studied through the stability conditions, bifurcation behavior and maximum Lyapunov exponent (MLE). A relation between the mathematical analysis and fractal behavior is demonstrated, which enables formulating the fractal limits. A compact fractal generation process is presented, which results in designing and implementing an optimized hardware architecture. An efficient FPGA implementation of the fractal behavior is validated experimentally on Artix-7 FPGA board. Two examples of fractal implementation are verified, yielding frequencies of 34.593 MHz and 31.979 MHz and throughputs of 0.415 Gbit/s, 0.384 Gbit/s. Compared to recent related works, the proposed implementation demonstrates its efficient hardware utilization and suitability for potential applications. © 2021 Elsevier Ltd

FPGA REALIZATION OF COMPLEX LOGISTIC MAP FRACTAL BEHAVIOR

This paper studies the capability of digital architecture to mimic fractal behavior. As chaotic attractors realized digitally had opened many tracks, digital designs mimicking fractals may ultimately achieve the same. This study is based on a complex single-dimensional discrete chaotic system known as the generalized positive logistic map. The fractals realized from this system are linked to the results of the mathematical analysis to understand the fractal behavior with different variations. A digital hardware architecture manifesting the fractal behavior is achieved on FPGA, showing a fractal entity experimentally. With this digital realization, it is hoped that fractals can follow the example of chaotic attractors digital applications. © 2022 World Scientific Publishing Company.

Numerical Sensitivity Analysis and Hardware Verification of a Transiently-Chaotic Attractor

We introduce a new chaotic system with nonhyperbolic equilibrium and study its sensitivity to different numerical integration techniques prior to implementing it on an FPGA. We show that the discretization method used in numerically integrating the set of differential equations in MATLAB and Mathematica does not yield chaotic behavior except when a low accuracy Euler method is used. More accurate higher-order numerical algorithms (such as midpoint and fourth-order Runge-Kutta) result in divergence in both MATLAB and Mathematica (but not Python), which agrees with the divergence observed in an analog circuit implementation of the system. However, a fixed-point digital FPGA implementation confirms the chaotic behavior of the system using Euler and fourth-order Runge-Kutta realizations. Therefore, the increased sensitivity of chaotic systems with nonhyperbolic equilibrium should be carefully considered for reproducibility. © 2022 World Scientific Publishing Company.

Hardware stream cipher with controllable chaos generator for colour image encryption

This study presents hardware realisation of chaos-based stream cipher utilised for image encryption applications. A third-order chaotic system with signum non-linearity is implemented and a new post processing technique is proposed to eliminate the bias from the original chaotic sequence. The proposed stream cipher utilises the processed chaotic output to mask and diffuse input pixels through several stages of XORing and bit permutations. The performance of the cipher is tested with several input images and compared with previously reported systems showing superior security and higher hardware efficiency. The system is experimentally verified on XilinxVirtex 4 field programmable gate array (FPGA) achieving small area utilisation and a throughput of 3.62 Gb/s. © The Institution of Engineering and Technology 2013.

Reconfigurable chaotic pseudo random number generator based on FPGA

This paper presents an FPGA Pseudo Random Number Generator (PRNG) that is based on the Lorenz and Lü chaotic systems. These two systems are used to generate four different 3D chaotic attractors. One attractor is generated from Lorenz while the other three attractors are generated from Lü. The output attractor of the proposed PRNG can be reconfigured during real time operation using an efficient hardwired shifting and multiplexing scheme. Furthermore, in order to exploit the proposed reconfiguration feature, the proposed PRNG has been embedded in an FPGA cascaded encryption processor that ciphers the input data from one up to four times successively. In each ciphering operation the PRNG is set to a new configuration and is initialized according to a part of the encryption key. The size of the encryption key can be varied according to the number of required ciphering operations. The proposed PRNG has been realized using VHDL, synthesized on Xilinx using the FPGA device XC5VLX50T, and analyzed using MATLAB and the NIST statistical suite. The proposed PRNG has utilized only 1.4% from the FPGA’s slices, achieved an operating frequency up to 78 MHz, and successfully passed all the NIST statistical tests. © 2018 Elsevier GmbH

DISH: Digital image steganography using stochastic-computing with high-capacity

Stochastic computing is a relatively new approach to computing that has gained interest in recent years due to its potential for low-power and high-noise environments. It is a method of computing that uses probability to represent and manipulate data, therefore it has applications in areas such as signal processing, machine learning, and cryptography. Stochastic steganography involves hiding a message within a cover image using a statistical model. Unlike traditional steganography techniques that use deterministic algorithms to embed the message, stochastic steganography uses a probabilistic approach to hide the message in a way that makes it difficult for an adversary to detect. Due to this error robustness and large bit streams stochastic computing, they are well suited for high capacity and secure image steganography. In this paper, as per the authors’ best knowledge, image steganography using stochastic computing based on linear feedback shift register (LFSR) is proposed for the first time. In the proposed technique, the cover image is converted to stochastic representation instead of the binary one, and then a secret image is embedded in it. The resulting stego image has a high PSNR value transmitted with no visual trace of the hidden image. The final results are stego image with PSNR starting from 30 dB and a maximum payload up to 40 bits per pixel (bpp) with an effective payload up to 28 bpp. The proposed method achieves high security and high capability of the number of stored bits in each pixel. Thus, the proposed method can prove a vital solution for high capacity and secure image steganography, which can then be extended to other types of steganography. © 2024, The Author(s).